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Preface

Apparently, at the basis of geometrical thinking there lie mechanisms, so far
unknown, that enable us to extract and use structurally formed elements of
information flow. This point of view is developed in more detail in Chapter 1.
Starting from this, we make an attempt to realize the variety of modern geo-
metrical theories, imitating the physicists who, starting from the “big bang”
hypothesis, explain the existing state of the universe.

In putting together this survey of what seem to us the fundamental concepts,
ideas and mthods of modern differential geometry, we have not intended that it
should be read systematically from beginning to end. Therefore within each
chapter and the book as a whole the presentation gradually speeds up, so that
the reader can start or stop wherever it is natural for him. Any new theme begins
with “general conversations™; the process of turning these into precise formulae
is traced as far as possible. We have drawn attention to this aspect, since the art
of a geometer is determined to a large extent by the ability to organize this
process.

Our understanding of geometry as a whole has changed significantly in the
process of writing this survey, and we shall be satisfied if the benefit that we
ourselves have gained turns out to be not only the property of the authors.

In conclusion we wish to thank sincerely our friends and colleagues in the
Laboratory of Problems of High Dimension of the Institute of Program Systems
of the USSR Academy of Sciences for the very substantial help they have given
us in preparing the manuscript for the press, and the Chief Editor of this series,
Corresponding Member of the USSR Academy of Sciences R.V. Gamkrelidze.



Chapter 1
Introduction: A Metamathematical View
of Differential Geometry

“Geometry is the ruler of all mental investigation”.
M.V. Lomonosov

§1. Algebra and Geometry — the Duality of the Intellect

It is known from physiology that in the process of thinking the hemispheres
of the human brain fulfil different functions. The left one is the site of the
“rational” mind. In other words, this part of the brain carries out formal
deductions, reasons logically, and so on. On the other hand, imagination, intui-
tion, emotions and other components of the “irrational” mind are the prod-
uct of the right hemisphere. This division of labour can have the following
explanation.

The process of solving some problem or other by a human being or an artificial
mechanism involves the need to draw correct conclusions from correct premises.
The logical computations that carry out these functions in various specific
circumstances can easily be formulated algorithmically and thereby carried out
on modern computers. There are good reasons for supposing that the human
brain acts in a similar way and the left hemisphere is its “logical block”. However,
the ability to argue logically is only half the problem, and apparently the simpler
half. In fact, to solve any complicated problem it is necessary to construct a
rather long chain, consisting of logically correct elements of the type “premise-
conclusion”. However, from given premises it is possible to draw very many
correct conclusions. Therefore it is practically impossible to find the solution of
a complicated problem by randomly building up logically correct chains of the
form mentioned, in view of the large number of variants that arise. Thus the
problem we are posing is: in which direction should we reason? We can solve it
only if there are various mechanisms of selection and motivation, that is, mecha-
nisms that induce the thinking apparatus to consider only expedient versions.
Man solves this problem by using intuition and imagination. Thus, we can think
that the process of evolution of nature has led to the two most important aspects
of any thought process — the formally logical and the motivational — being
provided by the two functional blocks of the brain - its left and right hemispheres,
respectively.



10 Chapter 1. Introduction

Mathematics is the science that deals with pure thought. Therefore the two
main aspects of mental activity mentioned above must be revealed in its structure.
In fact, this is familiar to everyone from the school division of mathematics into
algebra and geometry. Apparently we can regard it as established experimentally
that an algebraist or analyst is a mathematician with a pronounced dominant
left hemisphere, while for a geometer it is the right hemisphere. Thus, if we
consider the body of mathematicians linked by various lines of communication,
having a common memory, in which there are mechanisms of stimulation and
repression, etc., as a thinking system, then geometry is the product of its right
hemisphere.

It is clear a priori that successful functioning of the intellect (natural or
artificial) can be ensured by balanced interaction of its right and left hemispheres,
acting on different levels. Hypertrophy of the function of the left hemisphere leads
to a phenomenon that can appropriately be called thought bureaucracy (for-
malism, scholasticism, and so on). On the other hand, hypertrophy of the right
hemisphere leads to unsound fantasies and wandering in the clouds. For example,
F. Klein (Klein [1926]) writes: “We state here as a principle that we will always
combine the analytical and geometrical treatment of problems, and we shall not,
like many mathematicians, take a one-sided point of view. An analytical treat-
ment does not give a visual idea of the results obtained, while a geometrical
examination can only give an approximate basis for proof ...”.

We liken the development of thought in the solution of a problem to the
process of propagation of an electromagnetic wave, as a consequence of the
inductive connection of an electric field (E) and a magnetic field (H) (Fig. 1). We
venture to compare the left hemisphere (algebra) with E, and the right hemisphere
(geometry) with H, since a magnetic field does not have sources. Short-wave
oscillations of algebra-geometry type inevitably arise when one or several in-
vestigators are working on a specific problem. Long waves of this kind, which
often interfere with one another in an odd way, are the waves of mathematical
history.

N
A

Fig. 1

If 20 years ago the formal algebraic spirit, personified by Nicolas Bourbaki,
dominated, nowadays the geometrical spirit is on the crest of the wave, with the
typical growth of interest shown by mathematicians in problems of physics and
nature in general. The chain
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: Differential Homological
Analysis |- —
topology algebra
i
initial “geometry” secondary “algebra”
“algebra” directing it regulating this “geometry”

is an example of a large-scale wave in modern mathematics.

§ 2. Two Examples: Algebraic Geometry,
Propositional Logic and Set Theory

2.1. In ancient manuscripts of geometrical content, instead of a proof of a
theorem there is often displayed a convenient diagram together with the instruc-
tion “look”. Thereby it is implicitly assumed that the contemplation of the
diagram is capable of arranging the thoughts of the observer into a conclusive
chain of deductions. Modern algebraic geometry is an approach to the solution
of problems of commutative algebra by way of an intelligent and systematic
construction of the necessary visual images. The source of this approach is an
idea that goes back to Descartes: it is possible to obtain a visual representation
of the set of solutions of a system of polynomial equations, interpreting it by
introducing coordinates as an “algebraic subvariety” of affine space. In modern
algebraic geometry the main way of visualizing is to interpret an arbitrary
commutative algebra as the algebra of functions on some set. Its description in
general outline reduces to the following (the definitions of the simplest concepts
of commuatative algebra used below can be found, for example, in Volume 11
of the present series).

Let A be a commuatative algebra with unity over a field k. Consider the set
Spec A of all prime ideals of this algebra. An element a € A can be thought of as
a “function” on this set, whose value at a point p € Spec A is equal to the image
of a under the natural homomorphism 4 — A/p. As a result we obtain the
following picture: to each point p of Spec 4 we “attach™ an algebra A/p without
divisors of zero (since p is a prime ideal) and the “function” mentioned above,
associated with the element a € 4, is the map p+ [a] € A/p. The algebra A/p,
generally speaking, depends on p. If this dependence did not exist, that is, all the
algebras A/p were the same, then the construction we have described would lead
us to the usual A/p-valued functions on Spec A.

Example. Let k = C (the field of complex numbers) and let 4 = C[x] be the
algebra of polynomials with complex coefficients in the variable x. Any non-zero
prime ideal p c A consists of polynomials divisible by x — ¢ (the number ce C
is fixed). Dividing a given polynomial p(x) € A by x — ¢ and taking the remainder,
we obtain a unique representation in the form p(x) = p, + (x — c)h(x), where
po € C. Then A/p = Cifp # {0}, and we can represent the operation of factoriza-



