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Preface

AISC 2002, the 6th international conference on Artificial Intelligence and Symbo-
lic Computation, and Calculemus 2002, the 10th symposium on the Integration
of Symbolic Computation and Mechanized Reasoning, were held jointly in Mar-
seille, France on July 1-5, 2002. This event was organized by the three universities
in Marseille together with the LSIS (Laboratoire des Sciences de I'Information
et des Systémes).

AISC 2002 was the latest in a series of specialized conferences founded by
John Campbell and Jacques Calmet with the initial title “Artificial Intelligence
and Symbolic Mathematical Computation” (AISMC) and later denoted “Artifi-
cial Intelligence and Symbolic Computation” (AISC). The scope is well defined
by its successive titles.

AISMC-1 (1992), AISMC-2 (1994), AISMC-3 (1996), AISC’98, and AISC 2000
took place in Karlsruhe, Cambridge, Steyr, Plattsburgh (NY), and Madrid re-
spectively. The proceedings were published by Springer-Verlag as LNCS 737,
LNCS 958, LNCS 1138, LNAI 1476, and LNAI 1930 respectively.

Calculemus 2002 was the 10th symposium in a series which started with three
meetings in 1996, two meetings in 1997, and then turned into a yearly event in
1998. Since then, it has become a tradition to hold the meeting jointly with an
event in either symbolic computation or automated deduction.

Both events share common interests in looking at Symbolic Computation,
each from a different point of view: Artificial Intelligence in the more general
case of AISC and Automated Deduction in the more specific case of Calculemus.
Holding the two conferences jointly should trigger interdisciplinary research, with
the first results expected at AISC 2004 (Austria) and at Calculemus 2003.

This volume includes papers accepted for presentation at both AISC 2002
and Calculemus 2002. From the 52 contributions submitted, 17 full papers were
accepted for AISC, plus 7 full papers and 2 system descriptions for the Cal-
culemus program. In addition, the invited speakers’ abstracts are included as
part of this volume. Several work-in-progress contributions were accepted for
presentation at Calculemus 2002 but are not published in these proceedings.

We would like to express our thanks to the members of the two program
committees, to the AISC steering committee, to the Calculemus trustees, to
the referees, and to the organizing committee. Finally, we gratefully thank the
sponsors for their financial support. Names are listed on the following pages.
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Constraint A cquisition*

Eugene C. Freuder

Cork Constraint Computation Centre
University College Cork, Cork, Ireland
e.freuder@4c.ucc.ie; www.4c.ucc.ie

Abstract. Many problems may be viewed as constraint satisfaction problems.
Application domains range from construction scheduling to bioinformatics. Con-
straint satisfaction problems involve finding values for problem variables subject
to restrictions on which combinations of values are allowed. For example, in
scheduling professors to teach classes, we cannot schedule the same professor to
teach two different classes at the same time. There are many powerful methods
for solving constraint satisfaction problems (though in general, of course, they are
NP-hard). However, before we can solve a problem, we must describe it, and we
want to do so in an appropriate form for efficient processing. The Cork Constraint
Computation Centre is applying artificial intelligence techniques to assist or auto-
mate this modelling process. In doing so, we address a classic dilemma, common
to most any problem solving methodology. The problem domain experts may not
be expert in the problem solving methodology and the experts in the problem
solving methodology may not be domain experts.

* The author is supported by a Principal Investigator Award from Science Foundation Ireland.
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Expressiveness and Complexity of Full
First-Order Constraints in the Algebra of Trees

Alain Colmerauer

Laboratoire d’Informatique Fondamentale de Marseille, Université Aix-Marseille II,
France, alain.colmerauer@lim.univ-mrs.fr

Extended Abstract

What can be expressed by constraints, in the algebra of trees, if quantifiers and
all the logical connectors are allowed? What is the complexity of algorithms for
solving such general first-order constraints? This talk answers these two ques-
tions.

Preliminaries. Let F' be a set of function symbols. The algebra of trees consists
of the set of trees, whose nodes are labelled by elements of F, together with the
construction operations linked to the elements f of F. Such an operation, with
f of arity n, is the mapping (ay,...,a,) + a, where a is the tree, whose initial
node is labelled f and whose sequence of daughters is a1, ..., a,. A general first-
order constraint is a formula made from: variables, elements of F', the equality
symbol =, the logical constants and connectors true, false, —, A,V and the usual
quantifiers 4, V.

Ezpressiveness. With respect to expressiveness, we show how to express a con-
straint of the form

Jug ... Ju,
r=ug N\

de ‘P(UO» ul) A
" (z,y) = [p(ur,ug) A
@(un—ly un) A
[Un=Y J
by an equivalent constraint 1, (x,vy), of size almost proportional to the size of
the constraint ¢(z,y). More precisely, we show that there exists a constant c
such that, for any n,

[¥n(@,9)*™] < clo(z,y)],
where a(n) is the huge integer
2(*)
) def 2( )

e —

n

For n = 5, this integer is already larger than the number of atoms of the universe.

J. Calmet et al. (Eds.): AISC-Calculemus 2002, LNAI 2385, pp. 2-3, 2002.
(© Springer-Verlag Berlin Heidelberg 2002



Expressiveness and Complexity of Full First-Order Constraints 3

Complexity. With respect to complexity, by making use of the previous result,
we show that there exists a constant d and an integer ng such that:

For any n > ng, there exists a constraint 1 of size n, without free variables,
such that any algorithm, which decides whether v is satisfied in the algebra of
trees, executes at least a(|dn|) instructions.



Deduction versus Computation: The Case of
Induction

Eric Deplagne and Claude Kirchner

LORIA & INRIA,
615 rue du Jardin Botanique, BP 101,
54602 Villers-les-Nancy Cedex, Nancy, France.
{Eric.Deplagne,Claude.Kirchner}@loria.fr

Abstract. The fundamental difference and the essential complementar-
ity between computation and deduction are central in computer algebra,
automated deduction, proof assistants and in frameworks making them
cooperating. In this work we show that the fundamental proof method
of induction can be understood and implemented as either computation
or deduction.

Inductive proofs can be built either explicitly by making use of an induc-
tion principle or implicitly by using the so-called induction by rewriting
and inductionless induction methods. When mechanizing proof construc-
tion, explicit induction is used in proof assistants and implicit induction
is used in rewrite based automated theorem provers. The two approaches
are clearly complementary but up to now there was no framework able to
encompass and to understand uniformly the two methods. In this work,
we propose such an approach based on the general notion of deduction
modulo. We extend slightly the original version of the deduction modulo
framework and we provide modularity properties for it. We show how
this applies to a uniform understanding of the so called induction by
rewriting method and how this relates directly to the general use of an
induction principle.

Summary

Induction is a fundamental proof method in mathematics. Since the emergence
of computer science, it has been studied and used as one of the fundamental
concepts to build mathematical proofs in a mechanized way. In the rising era of
proved softwares and systems it plays a fundamental role in frameworks allowing
to search for formal proofs. Therefore proofs by induction have a critical role in
proof assistants and automated theorem provers. Of course these two comple-
mentary approaches of proof building use induction in very different ways. In
proof assistants like COQ, ELF, HOL, Isabelle, Larch, NQTHM, PVS, induc-
tion is used explicitly since the induction axiom is applied in an explicit way:
the human user or a clever tactics should find the right induction hypothesis
as well as the right induction variables and patterns to conduct the induction
steps. In automated theorem provers specific methods have been developed to

J. Calmet et al. (Eds.): AISC-Calculemus 2002, LNAI 2385, pp. 4-6, 2002.
(© Springer-Verlag Berlin Heidelberg 2002



Deduction versus Computation: The Case of Induction 5

automatically prove inductive properties. The most elaborated ones are based on
term rewriting and saturation techniques. They are respectively called induction
by rewriting and inductionless induction or proof by consistency. Systems that
implement these ideas are Spike, RRL or INKA.

The latter automated methods have been studied since the end of the sev-
enties and have shown their strengths on many practical examples from simple
algebraic specifications to more complicated ones like the Gilbreath card trick.
But what was intriguing from the conceptual point of view was the relationship
between explicit and implicit induction: implicit induction was shown to prove
inductive theorems, but the relationship with the explicit use of the induction
principle was open.

In this work, we provide a framework to understand both approaches in a
unified way. One important consequence is that it allows us to combine in a
well-understood way automated and assisted proof search methods. This rec-
onciliation of the two approaches will allow automated theorem provers and
proof assistants to collaborate in a safe way. It will also allow proof assistants to
embark powerful proof search tactics corresponding to implicit induction tech-
niques. This corresponds to the deduction versus computation scheme advocated
in [1] under the name of deduction modulo: we want some computations to be
made blindly i.e. without the user interaction and in this case this corresponds
to implicit induction; but one also needs to explicitly control deduction, just
because we know this is unavoidable and this can also be more efficient.

It is thus not surprising to have our framework based on deduction modulo.
This presentation of first-order logic relies on the sequent calculus modulo a
congruence defined on terms and propositions. But since we need to formalize
the induction axiom which is by essence a second-order proposition, we need to
use the first-order representation of higher-order logic designed in [2]. In this
formalism, switching from explicit induction to implicit one becomes clear and
amounts to push into the congruence some of the inductive reasoning, then to
apply standard automated reasoning methods to simplify the goal to be proved
and possibly get a better representation of the congruence.

This work relies on the notions and notations of deduction modulo [1] as
well as on the first-order presentation of higher-order logic presented in [2].
We refer to these two papers for full definitions, details and motivations of the
framework. Using this new framework, we uniformly review the induction by
rewriting method and show how it directly relates to the induction principle,
thus providing proof theoretic instead of model theoretic proofs of this rewrite
based method.

Consequently, since the proof method is completely proof theoretic, to any
rewrite based inductive proof we can canonically associate an explicit proof in
the sequent calculus, thus providing a proof assistant with all the necessary
informations to replay the proof as needed.



6 E. Deplagne and C. Kirchner

References

1. Gilles Dowek, Thérese Hardin, and Claude Kirchner. Theorem proving modulo.
Rapport de Recherche 3400, Institut National de Recherche en Informatique et en
Automatique, April 1998.
ftp://ftp.inria.fr/INRIA/publication/RR/RR-3400.ps.gz.

2. Gilles Dowek, Thérese Hardin, and Claude Kirchner. HOL-Ao an intentional first-
order expression of higher-order logic. Mathematical Structures in Computer Sci-
ence, 11(1):21-45, 2001.



Integration of Quantifier Elimination with
Constraint Logic Programming

Thomas Sturm

University of Passau, Germany
sturm@uni-passau.de
http://www.fmi.uni-passau.de/ sturm/

Abstract. We examine the potential of an extension of constraint logic
programming, where the admissible constraints are arbitrary first-order
formulas over some domain. Constraint solving is realized by effective
quantifier elimination. The arithmetic is always exact. We describe the
conceptual advantages of our approach and the capabilities of the current
implementation CLP(RL). Supported domains are currently R, C, and Q.
For our discussion here we restrict to R.

1 Constraint Logic Programming

Logic programming languages have emerged during the early seventies with Pro-
log by Colmerauer and Kowalski being the by far most prominent example. The
major conceptual contribution was disconnecting logic from control [Kow79).
The programmer should not longer be concerned with specifying and coding al-
gorithmic control structures but instead declaratively specify a problem within
some formal logical framework (Horn clauses). The system would then provide
a universal control algorithm (resolution) for solving the specified problem. Pro-
log became surprisingly successful during the eighties. This pure approach of
declarative specification, however, turned out to be not sufficiently efficient. On
the basis of the observation that the arithmetic capabilities of the processing
machine had remained unused, there had then been numbers added to Prolog
and built-in predicates on these numbers. This approach, however, was not com-
patible with the original idea of separating logic and control.

This dilemma has been resolved with the step from logic programming (LP)
to constraint logic programming (CLP) around the mid of the eighties. CLP com-
bines logic programming languages with constraint solvers. Constraint solving
was another established declarative programming paradigm that had come into
existence already in the early sixties in connection with graphics systems. A
constraint solving problem is given by a finite set of constraints. A constraint is
a relational dependence between several objects, variables, and certain functions
on these numbers and variables. The type of objects and the admitted functions
and relational dependences make up the domain of the constraint solver. One
example are linear programming problems (the target function can be coded as
an extra constraint). A solution of a constraint system is one binding of all vari-
ables such that all constraints are simultaneously satisfied. A constraint solver

J. Calmet et al. (Eds.): AISC-Calculemus 2002, LNAT 2385, pp. 7-11, 2002.
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