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The Geometry of Physics

This book is intended to provide a working knowledge of those parts of exterior differ-
ential forms, differential geometry, algebraic and differential topology, Lie groups, vector
bundles, and Chern forms that are essential for a deeper understanding of both classical
and modern physics and engineering. Included are discussions of analytical and fluid dy-
namics, electromagnetism (in flat and curved space), thermodynamics, elasticity theory, the
geometry and topology of Kirchhoff’s electric circuit laws, soap films, special and gen-
eral relativity, the Dirac operator and spinors, and gauge fields, including Yang-Mills, the
Aharonov—Bohm effect, Berry phase, and instanton winding numbers, quarks, and the quark
model for mesons. Before a discussion of abstract notions of differential geometry, geomet-
ric intuition is developed through a rather extensive introduction to the study of surfaces
in ordinary space; consequently, the book should be of interest also to mathematics students.

This book will be useful to graduate and advanced undergraduate students of physics,
engineering, and mathematics. It can be used as a course text or for self-study.

This second edition includes three new appendices, Appendix C, Symmetries, Quarks,
and Meson Masses (which concludes with the famous Gell-Mann/Okubo mass formula);
Appendix D, Representations and Hyperelastic Bodies; and Appendix E, Orbits and Morse—
Bott Theory in Compact Lie Groups. Both Appendices C and D involve results from the
theory of representations of compact Lie groups, which are developed here. Appendix E
delves deeper into the geometry and topology of compact Lie groups.

Theodore Frankel received his Ph.D. from the University of California, Berkeley. He is
currently emeritus professor of mathematics at the University of California, San Diego.
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Preface to the Second Edition

This second edition differs mainly in the addition of three new appendices: C, D, and
E. Appendices C and D are applications of the elements of representation theory of
compact Lie groups. ‘

Appendix C deals with applications to the flavored quark model that revolutionized
particle physics. We illustrate how certain observed mesons (pions, kaons, and etas)
are described in terms of quarks and how one can “derive” the mass formula of Gell-
Mann/Okubo of 1962. This can be read after Section 20.3b.

Appendix D is concerned with isotropic hyperelastic bodies. Here the main result
has been used by enginéers since the 1850s. My purpose for presenting proofs is that
the hypotheses of the Frobenius—Schur theorems of group representations are exactly
met here, and so this affords a compelling excuse for developing representation theory,
which had not been addressed in the earlier edition. An added bonus is that the group
theoretical material is applied to the three-dimensional rotation group SO(3), where
these generalities can be pictured explicitly. This material can essentially be read after
Appendix A, but some brief excursion into Appendix C might be helpful.

Appendix E delves deeper into the geometry and topology of compact Lie groups.
Bott’s extension of the presentation of Morse theory that was given in Section 14.3c is
sketched and the example of the topology of the Lie group U (3) is worked out in some
detail.



Preface to the Revised Printing

In this reprinting I have introduced a new appendix, Appendix B, Harmonic Chains
and Kirchhoff’s Circuit Laws. This appendix deals with a finite-dimensional version
of Hodge's theory, the subject of Chapter 14, and can be read at any time after Chapter
13. It includes a more geometrical view of cohomology, dealt with entirely by matrices
and elementary linear algebra. A bonus of this viewpoint is a systematic “geometrical”
description of the Kirchhoff laws and their applications to direct current circuits, first
considered from roughly this viewpoint by Hermann Weyl in 1923.

I have corrected a number of errors and misprints, many of which were kindly
brought to my attention by Professor Friedrich Heyl.

Finally, I would like to take this opportunity to express my great appreciation to my
editor, Dr. Alan Harvey of Cambridge University Press.



Preface‘ to the First Edition

The basic ideas at the foundations of point and continuum mechanics, electromag-
netism, thermodynamics, special and general relativity, and gauge theories are geomet-
rical, and, I believe, should be approached, by both mathematlcs and physics students,
from this point of view.

This is a textbook that develops some of the geometrical concepts and tools that
are helpful in understanding classical and modern physics and engineering. The math-
ematical subject material is essentially that found in a first-year graduate course in
differential geometry. This is not coincidental, for the founders of this part of geome-
try, among them Euler, Gauss, Jacobi, Riemann, and Poincaré, were also profoundly
interested in “natural philosophy.”

Electromagnetism and fluid flow involve line, surface, and volume integrals. An-
alytical dynamics brings in muiltidimensional versions of these objects. In this book
these topics are discussed in terms of exterior differential forms. One alsa needs
to differentiate such integrals with respect to time, especially when the domains of
integration are changing (circulation, vorticity, helicity, Faraday’s law, etc.), and this
is accomplished most naturally with aid of the Lie derivative. Analytical dynamics,
thermodynamics, and robotics in engineering deal with constraints, including the puz-
zling nonholonomic ones, and these are dealt with here via the so-called Frobenius
theorem on differential forms. All these matters, and more, are considered in Part One
of this book.

Einstein created the astonishing principie field strength = curvature to explain
the gravitational field, but if one is not familiar with the classical meaning of surface
curvature in ordinary 3-space this is merely a tautology. Consequently I introduce
differential geometry before discussing general relativity. Cartan’s version, in terms
of exterior differential forms, plays a central role. Differential geometry has applications
to more down-to-earth subjects, such as soap bubbles and periodic motions of dynamical
systems. Differential geometry occupies the bulk of Part Two.

Einstein’s principle has been extended by physicists, and now all the field strengths
occurring in elementary particle physics (which are required in order to construct a La-

xxiii



xxiv PREFACE TO THE FIRST EDITION

grangian) are discussed in terms of curvature and connections, but it is the curvature
of a vector bundle, that is, the field space, that arises, not the curvature of space-time.
The symmetries of the ‘quantum field play an essential role jin these gauge theories,
as was first emphasized by Herthann Weyl, and these are understood today in terms of
Lie groups, which are an essential ingredient of the vector bundle. Since many quan-
tum situations (charged particles in an electromagnetic field, Aharonov—Bohm effect,
Dirac monopoles, Berry phase, Yang—Mills fields, instantons, etc.) have analogues in
elementary differential geometry, we can use the geometric methods and pictures of
Part Two as a guide; a picture is worth a thousand words! 1hese topics are discussed
in Part Three.

Topelogy is playing an increasing role in physics. A physical problem is “well
posed” if there exists a solution and it is unique, and the topology of the configuration
(spherical, toroidal, etc.), in particular the singular homology groups, has an essential
influence. The Brouwer degree, the Hurewicz homotopy groups, and Morse theory
play roles not only in modern gauge theories but also, for example, in the theory of
“defects” in materiais.

‘Topological methods are playing an important role in field theory; versions of the
Atiyah-Singer index theorem are frequently invoked. Although I do not develop this
theorem in general, I do discuss at length the most famous and elementary exam-
ple, the Gauss-Bonnet—Poincaré theorem, in two dimensions and also the meaning
of the Chern characteristic classes. These matters are discussed in Parts Two and
The Appendix to this book presents a nontraditional treatment of the stress ten-
sors appearing in continuum mechanics, utilizing exterior forms. In this endeavor I
am greatly indebted to my engineering colleague Hidenori Murakami. In particular
Murakami has supplied, in Section g of the Appendix, some typical computations in-
volving stresses and strains, but carried out with the machinery developed in this book.
We believe that these computations indicate the efficiency of the use of forms and Lie
derivatives in elasticity. The material of this Appendix could be read, except for some
minor points, after Section 9.5.

Mathematical applications to physics occur in at least two aspects. Mathematics is
of course the principal tool for solving technical analytical problems, but increasingly
it is also a principal guide in our understanding of the basic structure and concepts
involved. Analytical computations with elliptic functions are important for certain
technical problems in rigid body dynamics, but one could not have begun to understand
the dynamics before Euler’s introducing the moment of inertia tensor. I am very much
concerned with the basic concepts in physics. A glance at the Contents will show
in detail what mathematical and physical tools are being developed, but frequently
physical applications appear also in Exercises. My main philosophy has been to attack
physical topics as soon as possible, but only after effective mathematical tools have
been introduced. By analogy, ane can deal with problems of velocity and acceleration
after having learned the definition of the derivative as the limit of a quotient (or even
before, as in the case of Newton), but we all know how important the machinery of
calculus (e.g., the power, product, quotient, and chain rules) is for handling specific
problems. In the same way, it-is a mistake to talk seriously about thermodynamics
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before understanding that a total differential equation in more than two dimensions
need not possess an integrating factor. '

In a sense this book is a “final” revision of sets of notes for a year course that I
have given in La Jolla over many years. My goal has been to give the reader a working
knowledge of the tools that are of great value in geometry and physics and (increasingly)
engineering. For this it is absolutely essential that the reader work (or at least attempt)
the Exercises. Most of the problems are simple and require simple calculations. If you
find calculations becoming unmanageable, then in ail probability you are not taking
advantage of the machinery developed in this book.

This book is intended primarily for two audiences, first, the physics or engineering
student, and second, the mathematics student. My classes in the past have been pop-
ulated mostly by first-, second-, and third-year graduate students in physics, but there
have also been mathematics students and undergraduates. The only real mathemati-
cal prerequisites are basic linear algebra and some familiarity with calculus of several
variables. Most students (in the United States) have these by the beginning of the third
undergraduate year. '

All of the physical subjects, with two exceptions to be noted, are preceded by a brief
introduction. The two exceptions are analytical dynamics and the quantum aspects of
gauge theories.

Analytical (Hamiltonian) dynamics appears as a problem set in Part One, with very
little motivation, for the following reason: the problems form an ideal application of
exterior forms and Lie derivatives and involve no knowledge of physics. Only in Part
Two, after geodesics have been discussed, do we return for a discussion of analytical
dynamics from first principles. (Of course most physics and engineering students will
already have seen some introduction to analytical mechanics in their course work any-
way.) The significance of the Lagrangian (based on special relativity) is discussed in
Section 16.4 of Part Three when changes in dynamics are required for discussing the
effects of electromagnetism.

Anintroduction to quantum mechanics would have taken us too far afield. Fortunately
(for me) only the simplest quantum ideas are needed for most of our discussions. I
would refer the reader to Rabin’s article [R] and Sudbery’s book [Su} for excellent
introductions to the quantum aspects involved.

Physics and engineering readers would profit greatly if they would form the habit
of translating the vectorial and tensorial statements found in their customary reading
of physics articles and books into the language developed in this book, and using the
newer methods developed here in their own thinking. (By “newer” I mean methods
developed over the last one hundred years!)

As for the mathematics student, I feel that this book gives an overview of a large
portion of differential geometry and topology that should be helpful to the mathematics
graduate student in this age of very specialized texts and absolute rigor. The student
preparing to specialize, say, in differential geometry will need to augment this reading
with a more rigorous treatment of some of the subjects than that given here (e.g., in
Warner’s book [Wa] or the five-volume series by Spivak [Sp)). The mathematics student
should also have exercises devoted to showing what can go wrong if hypotheses are
weakened. I make no pretense of worrying, for example, about the differentiability
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classes of mappings needed in proofs. (Such matters are studied more carefully .in
the book [A, M, R] and in the encyclopedia article {T, T]. This latter article (and the
accompanying one by Eriksen) are also excellent for quegtions of historical priorities.)
I hope that mathematics students will enjoy the discussions of the physical subjects
even if they know very little physics; after all, physics is the source of interesting
vector fields. Many of the “physical” applications are useful even if they are thought
of as simply giving explicit examples of rather abstract concepts. For éxample, Dirac’s
equation in curved space can be considered as a nontrivial application of the method
of connections in associated bundles!

This is an introduction and there is much important mathematics that is not developed
here. Analytical questions involving existence theorems in partial differential equations,
Sobolev spaces, and so on, are missing. Although complex manifolds are defined, there
is no discussion of Kaehler manifolds nor the algebraic-geometric notions used in
string theory. Infinite dimensional manifolds are not considered. On the physical side,
topics are introduced usually only if I felt that geometrical ideas would be a great help
in their understanding or in computations.

I have included a small list of references. Most of the articles and books listed have
been referred to in this book for specific details. The reader will find that there are
many good books on the subject of “geometrical physics” that are not referred to here,
primarily because I felt that the development, or sophistication, or notation used was
sufficiently different to lead to, perhaps, more confusion than help in the first stages of
their struggle. A book that I feel is in very much the same spirit as my own is that by
Nash and Sen [N, S]. The standard reference for differential geometry is the two-volume
work [K, N] of Kobayashi and Nomizu.

Almost every section of this book begins with a question or a quotation which may
concern anything from the main thrust of the section to some small remark that should
not be overlooked.

A term being defined will usually appear in bold type.

I wish to express my gratitude to Harley Flanders, who introduced me long ago to
exterior forms and De Rham’s theorem, whose superb book [Fi} was perhaps the first to
awaken scientists to the use of exterior forms in their work. I am indebted to my chemical
colleague John Wheeler for conversations on thermodynamics and to Donald Fredkin
for helpful criticisms of earlier versions of my lecture notes. I have already expressed
my deep gratitude to Hidenori Murakami. Joel Broida made many comments on earlier
versions, and also prevented my Macintosh from taking me over. I've had many helpful
conversations with Bruce Driver, Jay Fillmore, and Michael Freedman. Poul Hjorth
made many helpful comments on various drafts and also served as “beater,” tierding
physics students into my course. Above all, my colleague Jeff Rabin used my notes
as the text in a one-year graduate course and made many suggestions and corrections.
I have also included corrections to the 1997 printing, following helpful remarks from
Professor Meinhard Mayer.

Finally I am grateful to the many students in my classes on geometrical physics for
their encouragement and enthusiasm in my endeavor. Of course none of the above is
responsible for whatever inaccuracies undoubtedly remain.
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