0.C. ZIENKIEWICZ & R.L. TAYLOR

The |

FINITE ELEMENT
METHOD

A1 B o 7

Volume 1
THE BASIS
FIFTH EDITION
1L 5

Elsevier (Singapore) Pte Itd.

ZPE)E L s 3)



The Finite Element
Method

Fifth edition

Volume 1: The Basis

0.C. Zienkiewicz, CBE, FRS, FREng
UNESCO Professor of Numerical Methods in Engineering
International Centre for Numerical Methods in Engineering, Barcelona
Emeritus Professor of Civil Engineering and Director of the Institute for
Numerical Methods in Engineering, University of Wales, Swansea

R.L. Taylor

Professor in the Graduate School
Department of Civil and Environmental Engineering
University of California at Berkeley
Berkeley, California




The Finite Element Methods Volume 1 5th ed.

0. C. Zienkiewicz, R. L. Taylor

ISBN:0-7506-5049-94

Copyright © 2000, by O. C. Zienkiewicz, R. L. Taylor, All rights
reserved.

Authorized English language reprint edition published by the Proprietor.
Reprint ISBN: 981-2592-93-8

Copyright © 2004 by Elsevier (Singapore) Pte Ltd. All rights reserved.

Elsevier (Singapore) Pte Ltd.
3 Killiney Road
#08-01 Winsland Hose I
Sinagpore 239519
Tel: (65) 6349-0200
Fax: (65) 6733-1817

First Published 2005
2005 FEHIRR

Printed in China by Beijing World Publishing Corporation under special
arrangement with Elsevier (Singapore) Pte Ltd. This edition is authorized
for sale in China only, excluding Hong Kong SAR and Taiwan.
Unauthorized export of this edition is a violation of the Copyright Act.
Violation of this Law is subject to Civil and Criminal Penalties.

AP FHER K Elsevier (Singapore) Pte Ltd. 33t BB H
ARG RAREFERMERBEEIT. XRNBEREERN
(FEEEFEBRITHRERERS) HEEFENEE. REFTH
B, WAEREERE, BZEEHE.



Dedication

This book is dedicated to our wives Helen and Mary
Lou and our families for their support and patience
during the preparation of this book, and also to all of
our students and colleagues who over the years have
contributed to our knowledge of the finite element
method. In particular we would like to mention
Professor Eugenio Ofiate and his group at CIMNE for
their help, encouragement and support during the
preparation process.




Preface

It is just over thirty years since The Finite Element Method in Structural and
Continuum Mechanics was first published. This book, which was the first dealing
with the finite element method, provided the base from which many further develop-
ments occurred. The expanding research and field of application of finite elements led
to the second edition in 1971, the third in 1977 and the fourth in 1989 and 1991. The
size of each of these volumes expanded geometrically (from 272 pages in 1967 to the
fourth edition of 1455 pages in two volumes). This was necessary to do justice to a
rapidly expanding field of professional application and research. Even so, much filter-
ing of the contents was necessary to keep these editions within reasonable bounds.

It seems that a new edition is necessary every decade as the subject is expanding and
many important developments are continuously occurring. The present fifth edition is
indeed motivated by several important developments which have occurred in the 90s.
These include such subjects as adaptive error control, meshless and point based
methods, new approaches to fluid dynamics, etc. However, we feel it is important
not to increase further the overall size of the book and we therefore have eliminated
some redundant material.

Further, the reader will notice the present subdivision into three volumes, in which the
first volume provides the general basis applicable to linear problems in many fields whilst
the second and third volumes are devoted to more advanced topics in solid and fluid
mechanics, respectively. This arrangement will allow a general student to study
Volume 1 whilst a specialist can approach their topics with the help of Volumes 2 and
3. Volumes 2 and 3 are much smaller in size and addressed to more specialized readers.

It is hoped that Volume 1 will help to introduce postgraduate students, researchers
and practitioners to the modern concepts of finite element methods. In Volume 1 we
stress the relationship between the finite element method and the more classic finite
difference and boundary solution methods. We show that all methods of numerical
approximation can be cast in the same format and that their individual advantages
can thus be retained.

Although Volume 1 is not written as a course text book, it is nevertheless directed at
students of postgraduate level and we hope these will find it to be of wide use. Math-
ematical concepts are stressed throughout and precision is maintained, although little
use is made of modern mathematical symbols to ensure wider understanding amongst
engineers and physical scientists.
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Preface

In Volumes 1, 2 and 3 the chapters on computational methods are much reduced by
transferring the computer source programs to a web site.! This has the very substan-
tial advantage of not only eliminating errors in copying the programs but also in
ensuring that the reader has the benefit of the most recent set of programs available
to him or her at all times as it is our intention from time to time to update and expand
the available programs.

The authors are particularly indebted to the International Center of Numerical
Methods in Engineering (CIMNE) in Barcelona who have allowed their pre- and
post-processing code (GiD) to be accessed from the publisher's web site. This
allows such difficult tasks as mesh generation and graphic output to be dealt with
efficiently. The authors are also grateful to Dr J.Z. Zhu for his careful scrutiny and
help in drafting Chapters 14 and 15. These deal with error estimation and adaptivity,
a subject to which Dr Zhu has extensively contributed. Finally, we thank Peter and
Jackie Bettess for writing the general subject index.

OCZ and RLT

' .
Co{nplete source code for all programs in the three volumes may be obtained at no cost from the
publisher’s web page: http://www.bh.com/companions;fem
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Some preliminaries: the standard
discrete system

1.1 Introduction

The limitations of the human mind are such that it cannot grasp the behaviour of its
complex surroundings and creations in one operation. Thus the process of sub-
dividing all systems into their individual components or ‘elements’, whose behaviour
is readily understood, and then rebuilding the original system from such components
to study its behaviour is a natural way in which the engineer, the scientist, or even the
economist proceeds.

In many situations an adequate model is obtained using a finite number of well-
defined components. We shall term such problems discrete. In others the subdivision
is continued indefinitely and the problem can only be defined using the mathematical
fiction of an infinitesimal. This leads to differential equations or equivalent statements
which imply an infinite number of elements. We shall term such systems continuous.

With the advent of digital computers, discrete problems can generally be solved
readily even if the number of elements is very large. As the capacity of all computers
is finite, continuous problems can only be solved exactly by mathematical manipula-
tion. Here, the available mathematical techniques usually limit the possibilities to
oversimplified situations.

To overcome the intractability of realistic types of continuum problems, various
methods of discretization have from time to time been proposed both by engineers
and mathematicians. All involve an approximation which, hopefully, approaches
in the limit the true continuum solution as the number of discrete variables
increases.

The discretization of continuous problems has been approached differently by
mathematicians and engineers. Mathematicians have developed general techniques
applicable directly to differential equations governing the problem, such as finite dif-
ference approximations.l‘2 various weighted residual procedures,3'4 or approximate
techniques for determining the stationarity of properly defined ‘functionals’. The
engineer, on the other hand, often approaches the problem more intuitively by creat-
ing an analogy between real discrete elements and finite portions of a continuum
domain. For instance, in the field of solid mechanics McHenry,’ Hrenikoff.®
Newmark’, and indeed Southwell’ in the 1940s, showed that reasonably good solu-
tions to an elastic continuum problem can be obtained by replacing small portions



2 Some preliminaries: the standard discrete system

of the continuum by an arrangement of simple elastic bars. Later, in the same context,
Argyris8 and Turner er al.® showed that a more direct, but no less intuitive, substitu-
tion of properties can be made much more effectively by considering that small
portions or ‘elements’ in a continuum behave in a simplified manner.

It is from the engineering ‘direct analogy’ view that the term ‘finite element’ was
born. Clough'® appears to be the first to use this term, which implies in it a direct
use of a standard methodology applicable to discrete systems. Both conceptually and
from the computational viewpoint, this is of the utmost importance. The first
allows an improved understanding to be obtained; the second offers a unified
approach to the variety of problems and the development of standard computational
procedures. )

Since the early 1960s much progress has been made, and today the purely mathe-
matical and ‘analogy’ approaches are fully reconciled. It is the object of this text to
present a view of the finite element method as « general discretization procedure of con-
tinuum problems posed by mathematically defined statements.

In ihe analysis of problems of a discrete nature, a standard methodology has been
developed over the years. The civil engineer, dealing with structures, first calculates
force~displacement relationships for each element of the structure and then proceeds
to assemble the whole by following a well-defined procedure of establishing local
equilibrium at each ‘node’ or connecting point of the structure. The resulting equa-
tions can be solved for the unknown displacements. Similarly, the electrical or
hydraulic engineer, dealing with a network of electrical components (resistors, capa-
citances, etc.) or hydraulic conduits, first establishes a relationship between currents
(flows) and potentials for individual elements and then proceeds to assemble the
system by ensuring continuity of flows.

All such analyses follow a standard pattern which is universally adaptable to dis-
crete systems. It is thus possible to define a standard discrete system, and this chapter
will be primarily concerned with establishing the processes applicable to such systems.
Much of what is presented here will be known to engineers, but some reiteration at
this stage is advisable. As the treatment of elastic solid structures has been the
most developed area of activity this will be introduced first, followed by examples
from other fields, before attempting a complete generalization.

The existence of a unified treatment of ‘standard discrete problems’ leads us to the
first definition of the finite element process as a method of approximation to con-
tinuum problems such that

(a) the continuum is divided into a finite number of parts (elements), the behaviour of
which is specified by a finite number of parameters, and

(b) the solution of the complete system as an assembly of its elements follows pre-
cisely the same rules as those applicable to standard discrete problems.

It will be found that most classical mathematical approximation procedures as well
as the various direct approximations used in engineering fall into this category. It is
thus difficult to determine the origins of the finite element method and the precise
moment of its invention.

Table 1.1 shows the process of evolution which led to the present-day concepts of
finite element analysis. Chapter 3 will give, in more detail, the mathematical basis
which emerged from these classical ideas.!! =%
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4 Some preliminaries: the standard discrete system

1.2 The structural element and the structural system

9

y
X
T ;
3
—>» Uy
p
Y
Nodes
1
X

Atypical element (1)

Fig. 1.1 A typical structure built up from interconnected elements.

To introduce the reader to the general concept of discrete systems we shall first
consider a structural engineering example of linear elasticity.

Figure 1.1 represents a two-dimensional structure assembled from individual
components and interconnected at the nodes numbered 1 to 6. The joints at the
nodes, in this case, are pinned so that moments cannot be transmitted.

As a starting point it will be assumed that by separate calculation, or for that matter
from the results of an experiment, the characteristics of each element are precisely
known. Thus, if a typical element labelled (1) and associated with nodes 1, 2, 3 is
examined, the forces acting at the nodes are uniquely defined by the displacements
of these nodes, the distributed loading acting on the element (p), and its initial
strain. The last may be due to temperature, shrinkage, or simply an initial ‘lack of
fit’. The forces and the corresponding displacements are defined by appropriate com-
ponents (U, V" and u, v) in a common coordinate system.

Listing the forces acting on all the nodes (three in the case illustrated) of the element
(1) as a matrix{ we have

qi
Lf
Q' =< q! qi={Vl'}, etc. (1.1)

fA limited knowledge of matrix algebra will be assumed throughout this book. This is necessary for
reasonable conciseness and forms a convenient book-keeping form. For readers not familiar with the subject
a brief appendix (Appendix A) is included in which sufficient principles of matrix algebra are given to follow
the development intelligently. Matrices (and vectors) will be distinguished by bold print throughout.



