3 Mahagemen} Handbook
0
Computer Usage




Nanagement Handbook
of
Computer Usage

R K Sachdeva



British Library Cataloguing in Publication Data

Sachdeva, Rajinder
Management handbook of computer usage.
1. Computer systems. Management
I. Tide
004'.068

ISBN 0-85012-769-6

©NCCBLACKWELL LIMITED, 1990
All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any

form or by any means, without the prior permission of The
National Computing Centre. .

vea e
Published for NCC Publications by NCC Blackwell Limited.

Editorial Office, The National Computing Centre Limited,
Oxford Road, Manchester M1 7ED, England. -

NCC Blackwell Limited, 108 Cowley Road,
Oxford OX4 1JF, England.

Typeset in Times by Bookworm Typesetting, Manchester;
and printed by Hobbs the Printers of Southampton.

ISBN 0-85012-769-6



Contents

1 Evolution of Computer Systems

1
Early Computing Devices 1
Developments in Computer Hardware 3
Developments in Computer Software 5
Evolution of Operating Systems 7
Application Packages and Development Aids 8

Developments in Telecommunications 10
Objectives of Computerisation 12
Batch Processing Systems 15
On-line and Real-time Processing Systems 17
Distributed Processing Systems 19
2 Information Technology Today 21
Organisation of Computer System Components 21
Main Storage or Memory 22
Direct Access Devices 25
Magnetic Tape Devices 27
Visual Display Units 27
Word Processing and Desktop Publishing 29
Printers and Plotters 30
Point-of-sale Terminals 32
Magnetic-ink Character Readers 32
Optical Character Readers 33
Optical Mark Readers and Scanners 33
Sensors and Factory Terminals 33

Cash Dispensers and Smart Cards 34



Voice and Speech

Range of Computer Systems
Computer Networks
Transmission Facilities

3 Impact on Organisation Management

Process of Management

Levels of Management

Process of Decision Making
Business Organisation as a System
Information, Data and Processing
Information Flow in Organisations
Types of Information

Types of Information Systems
Organisation of Databank
Database Systems

Objectives of Database Systems
Data Models

User Interface with Database

4 Computers at the Competitive Edge

General

Sales Administration
Marketing Functions
Manufacturing Operations
Basic Accounting Systems
Finance Functions
Personnel Functions
Office Systems

General-purpose Application Packages
Information Technology for Competitive Advantage

S Decision Support Systems

Management Decision Making

Structured, Unstructured and Semistructured Problems

End-user Computing
Decision Support Systems
Models for Decision Support
Decision Criteria



Corporate and Financial Models

Demand Forecasting

Breakeven Analysis

Inventory Control Models

Resource Allocation Models

Project Planning Models

Network Representation

Monte-Carlo Simulation

Electronic Spreadsheet

Investment Appraisal Using Electronic Spreadsheet

Expert Systems

Introduction

Features and Goals
Structure

Development

Expert Systems Tools
Expert Systems Applications
Expert Systems Examples

Changing Role of Information Systems Management

General

Centralisation versus Decentralisation
Organisational Placement of Data Processing
Functions and Roles in Information Processing
Development Models

Impact of End-user Computing

- Planning for Information Technology

Introduction

Issues in IT Planning

Planning for Stages of Growth
Methods of Planning

User Involvement in System Development

Introduction
Products of System Development
Products of Prototyping

101
102
105
106
107
109
111
112
114
116

121

121
122
124
130
132
133
134

139

139
142
144
145
156
158

167

167
171
172
175

185

185
187
195



10 Information System Standards

Aims and Organisations
Some BSI Standards
Organisational Standards
Quality Assurance
Standards Documents

11 Security, Integrity and Privacy

Introduction to Computer Security
Physical Security

Uninterruptible Power Supply

Air Conditioning

Software Failure

Hardware Failure

Fallback and Recovery

Need for System Controls

Batch System Controls

Real-time System Controls
Unauthorised Access
Communication Line Security
Audit of Computer Systems
Privacy and Data Protection

Need for Data Protection Legislation
Scope of UK Data Protection Act

12 Human Response

The Individual in the Organisation
Maslow and McGregor

Satisfiers and Dissatisfiers

Motivation Factors of DP Professionals
Impact of IT on Work

Glossary
Bibliography

Index

197

197
204
205
206

208

211

211
211
214
215
216
217
219
220
222
224
225
226
227
228
228
229

231

231
232
234
236
238

243
279

283



1 Evolution of
Computer Systems

EARLY COMPUTING DEVICES

The development of computers has followed a long evolutionary
path. Man’s interest in mechanical computational devices is age
old: primitive mechanical computational devices can be traced to
Ancient China and Ancient Greece. One of these, the abacus, is
still in use in some parts of the world. It consists of a frame with
beads sliding on wires to represent and manipulate numeric

values.

Logarithm tables were first published by the Scot John Napier in
1614. Every positive number can be associated with a logarithm,
with multiplication and division carried out through the simple
operations of adding and subtracting logarithms. The slide-rule,
based on the concept of the logarithm, was developed by William
Oughtred in 1622. This mechanical device allows multiplication
and division to be performed by sliding a moving rule against
fixed calibrations. The slide-rule is an early example of an
analogue device which employs continuous physical quantities,
like length or voltage, rather than discrete numbers as in digital
calculators and computers.

The arithmetic engine (the ‘Pascaline’), produced by Blaise
Pascal in 1642, was the first real calculating machine. Digits from
0 to 9 were arranged on wheels. Turning one wheel a full
revolution caused its neighbour to be advanced one notch. The
arithmetic engine worked on a similar principle to mechanical
milometers or the taxi meter. Later, in 1694, a more sophisticated

1



2 MANAGEMENT HANDBOOK OF COMPUTER USAGE

mechanical calculator was invented by Wilhelm Gottfried von
Leibniz. But it was not until the nineteenth century that
mechanic¢al computation took a major step forward. The Differ-
ence Engine, built by Charles Babbage, was unveiled to the
Royal Astronomical Society in 1821. It calculated the differences
between numbers to compute and check mathematical tables.

Babbage then began development of a new device, the
Analytical Engine, that was intended to function as a program-
controlled machine. This design provided ‘architectural’ concepts
that were to prove important for modern electronic digital
computers. The design for the Analytical Engine contained five
elements: input, store, arithmetic unit, control unit and output.
These, in one form or another, are intrinsic to all computer
systems. Input was accomplished by means of punched cards, a
facility originally developed by Joseph Maria Jacquard in France
to control looms automatically.

The Unit Record System, also using punched cards, was
developed by Hermann Hollerith in the 1880s. He won a
competition to find an efficient way of analysing the 1890
American census. The 80-column card designed by Hollerith was
still the main input medium in most electronic computers until the
1970s. The presence or absence of a hole in particular positions
on a card would be used to indicate the presence or absence of
particular characteristics of the individuals in the census. In order
to read the cards, rods were passed through them. The rods then
made contact with a bowl of mercury to form an electrical
contact, causing a counter to advance by one. The Unit Record
System consisted of a ‘sorter’ for arranging the punched cardsina -
desired sequence, a ‘collator’ to selectively merge the cards and a
‘tabulator’ to tabulate the contents of the cards.

This device was the first electromechanical computing system.
Use was made of hard-wired programs to control the operations
of the individual machines, and control panels could be wired
with different programs to achieve different results from the same
machines. Dr Hollerith’s work eventually gave birth to Inter-
national Business Machines (IBM) in the US and to International
Computers Limited (ICL) in the UK.



EVOLUTION OF COMPUTER SYSTEMS 3

DEVELOPMENTS IN COMPUTER HARDWARE

The concept of stored program control was further developed by
- John von Neumann in 1945 and this helped to lay the foundation
for modern electronic computers. He built a machine - EDVAC,
the Electronic Discrete Variable Automatic Computer — based on
this principle, in 1951. An earlier device ~ ENIAC, the Electronic
Numerical Integrator and Calculator — developed in 1946, is now
seen as one of the first general-purpose computers. It was a
gigantic machine with eighteen thousand valves. It consumed
many kilowatts of power, had to be water cooled and had a very

high failure rate compared to modern computers.

The earliest computers, built from electronic valves, are now
depicted as first-generation. The introduction of transistors, in the
late-1950s, resulted in second-generation computers. These were
typified by the ICT (a forerunner of ICL) 1301 and the IBM 1401.
Third-generation computers are based on integrated circuits
where large numbers of transistors and other electronic com-
ponents are carried on semiconductor chips. The ICL 1900 series,
System 4 and the IBM 360, introduced in 1964, are examples. The
development of large scale integration (LSI) and very large
scale integration (VLSI) led to fourth-generation computers. (It
was semiconductor technology which facilitated the emergence of
microcomputers in the early-1970s). Fifth-generation computers,
currently being developed, are intended to embody artificial
intelligence (AI) and other features. They will, for example, be
able to imitate common human functions like visiorni, natural
language comprehension and the use of specialised knowledge.

The internal computer storage (‘memory’) was, in the 1940s,
built from vacuum tubes. These were relatively large (a few
inches in length), and each was able to hold only one binary digit,
called a bit (a 0 or 1). The storage capacity of such first-generation
systems was tiny by present standards. The most popular
computer in the mid-1950s (the IBM 650) used a rotating drum
coated with a magnetisable material as the primary storage
medium. Between 1960 and 1975, however, the dominant
computer storage design used tiny rings or ‘cores’ of magnetisable
material in the primary storage section. Current flowing in one
direction represented a 0 while flow in the opposite direction



4 MANAGEMENT HANDBOOK OF COMPUTER USAGE

represented a 1. Since the core permanently retained its magnetic
state in the absence of the current, it was a non-volatile storage
medium. Core storage was popular for 15 years because it was
safe, durable and reasonably fast. However, the new storage
devices that appeared in the 1970s offered even faster perform-
ance at a lower cost and so the popularity of cores quickly faded.

Virtually all today’s computers use semiconductor elements in
their primary storage sections. Semiconductor storage elements
are tiny integrated circuits (ICs). Both the storage cell circuits
and the support circuitry needed for data writing and reading are
packaged on chips of silicon. The chips used for the primary
storage section usually employ metal-oxide semiconductor
(MOS) technology. In third-generation computers, the level of
integration was of the order of 200 transistor components on one
IC. The LS chips had a level of integration of 10,000 com-
ponents. Present-day VLSI chips integrate one million or more
components and can store that many bits of data. These chips are
available for a few dollars each. This represents a reduction, from
second-generation times, in the cost-to-performance factor of
more than one thousand. _ :

In the earliest electronic computers the feeding of input data
to, and output from, the computer was via the medium of
punched paper cards or punched paper tape. Such facilities were
very slow compared to present standards. Second-generation
computers used magnetic tapes which could store 800 characters
of data per inch of tape length. Hard magnetic disks could store
up to two million characters of data.

Miniaturisation of the central processing unit of the computer
was also reflected in the input and output devices. Magnetic tape
gave way to the cassette tape and the hard magnetic disk to the
floppy in the smaller mini and microcomputers. Today 3% inch-
diameter floppy disks can store more than a million characters of
data, and magnetic tapes with the capacity to store more than
6000 characters per inch are quite common. Hard disks used on
larger computers can store more than 500 million characters.
Similarly, rates of data transfer between the input/output devices
and the central processing unit have increased from a few
thousand characters per second in the second generation to more



EVOLUTION OF COMPUTER SYSTEMS 5

than a million characters per second in today’s systems.

Another popular modern input/output device is a visual display
unit (VDU) or visual display terminal (VDT). The terminal has
given rise to interactive computing — with on-line access to
computer data and to the computing power needed to manipulate
the data. Specialised input devices — such as optical readers in the
point-of-sale terminal - have made it possible to directly feed
data from the point of activity, instead of transcribing it onto
paper cards or magnetic tape.

DEVELOPMENTS IN COMPUTER SOFTWARE

Earlier computers were sold as bare machines consisting of
hardware alone. While the computer devices, such as the central
processing unit and the input/output devices, form the hardware
of the computer, processing procedures are necessary to solve
user problems on the computer. These procedures (programs)
are specified in special computer languages, and constitute the
computer software. Modern computers are sold along with a wide
variety of software designed to aid the computer user. Over the
years, computers have become increasingly ‘user-friendly’.

Communication with earlier computers was by means of highly
complicated machine languages. Each instruction in a machine
language consisted of a long string of binary digits (0 and 1). Each
machine instruction performed a very elementary operation ~
such as moving one digit of data from one place in the memory to
another or adding or subtracting two digits. The user operations
had to be broken down to series of such elementary operations
which could be directly executed by the machine. So programs for
simple jobs consisted of a large number of instructions, each
instruction in turn consisting of a long string of Os and 1s. Each
computer model had its unique machine language, and program-
ming a different. model of computer meant learning a different
machine language. The machine languages are referred to as
first-generation languages. g

Second-generation languages replaced the binary codes with
‘mnemonic codes’ and ‘symbolic addresses’ consisting of
alphabets and numerals. However, there was still 2 one-to-one
correspondence between the program instructions and the



6 MANAGEMENT HANDBOOK OF COMPUTER USAGE

corresponding machine-language instructions. So the program
still consisted of a large number of instructions performing
elementary steps. Such languages are referred to as low-level
languages and are also unique for each computer model. The
program in such a language has to be first translated into the
machine language before it can be executed; the translation is
carried out by the computer itself using the software supplied.
Examples of second-generation languages are AUTOCODER
used on IBM 1401 computers and PLAN used on ICL 1900 series
of computers. Third-generation languages are procedure oriented
and machine independent, ie a program written in such a
language can be executed on any computer, provided the
software is available to translate the program into the machine
language of the respective computer.

Using high-level languages the programmer concentrates on the
problem to be solved rather than on the design features of the
machine to be used. He describes the procedure for solving the
problem in terms of the natural steps used by humans. Each step
in a high-level language may be translated into a series of steps in
the machine language before execution by the computer.
Examples of high-level languages are BASIC, FORTRAN,
COBOL and Pascal. These languages have been standardised by
the International Standards Organization and are widely used.

Third-generation languages still needed vast numbers of lines
of codes for typical commercial programs. They were designed
for data processing professionals rather than for end-users. It was
very time-consuming to test the accuracy of programs (to ‘debug’
them). Modification of complex programs was very difficult and
huge investments went into maintaining them. A variety of
software development tools have now been developed to solve this
problem. These tools range from simple query languages to
application program generators (APLs). Such tools are referred
to as fourth-generation languages or 4GLs. In addition to
employing sequential statements, as do third-generation lan-
guages, they employ a diversity of other mechanisms such as form
filling, screen painting, questionnaire with menus, commands,
etc. The focus in these languages is to specify what is required to
be done rather than how it is to be achieved. If the problem can
be specified in computable specifications, machine code can be



EVOLUTION OF COMPUTER SYSTEMS 7

generated from it mechanically. A large number of such tools are
currently available; for example, ORACLE, PROGRESS, SEA-

CHANGE, etc.

EVOLUTION OF OPERATING SYSTEMS

Early computers could handle only one program at a time. The
operator had to perform a number of tasks manually between
every two jobs. The job program and input data would be loaded
on input devices, the storage areas in the processor would be
cleared of any data remaining from the previous job, appropriate
switches would be set, and the job would run alone in the
processor until it was completed. After completion, the job
program, input data, and output results would be unloaded by the
operator and the entire ritual would begin again for the next job.
Because the computer sat idle while the operator loaded and
unloaded jobs, a great deal of processing time was lost. The
situation was further degraded when a fault occurred during the
running of a program. The operator had to collect diagnostic
information in an attempt to pinpoint the fault. This was very
time consuming. ‘

The operating system (OS) software was designed to perform
routine housekeeping operations and to manage the computer
resources for their optimal utilisation. The early mainframe
operating systems reduced the idle time by allowing jobs to be
‘stacked up in a waiting line. When one job was finished, system
control would branch back to OS software which would automat-
ically perform the housekeeping duties needed to load and run the
next job. This automatic job-to-job transition is still one of the
major functions performed by a modern mainframe OS. :

The operating system has also made it possible to process more
than one program concurrently on the same computer. This
feature is called ‘multiprogramming’. The input and output
operations in any computer are generally many times slower than
the processing speed in the central processor. Thus when the
computer is busy executing only one program, the processor has
to wait for long intervals when the data is being read into the
memory or the results are being transferred to an output device.
This considerably reduces the processor utilisation. The operat-

Py



8 MANAGEMENT HANDBOOK OF COMPUTER USAGE

ing system software can switch control between programs so t_hat
each program is processed for short periods in an appropriate
sequence. The program that has to wait for an input/outpqt
operation relinquishes contzol in favour of other programs until it
has completed data transfer.

APPLICATION PACKAGES AND DEVELOPMENT AIDS

While system programs such as compilers (language translators)
and operating systems are designed to operate, control and
extend the processing capabilities of the computer itself, an
application program is needed to solve a specific data processing
task for a user. Conventionally, application programs are
custom-made according to the specific processing requirements of
the user. This requirement has often involved heavy investment
and long development periods. Internal expertise was required in
the organisation to develop such programs or at least to maintain
them. With the proliferation of computers, multiple users trying
to solve similar problems on computers became common. To
meet this situation, independent software suppliers started
developing application packages to supply them as prewritten
programs to prospective users. —

3
Application packages are designed for use in more than oné
environment or organisation to perform specific functions which
are common to these organisations and are performed similarly,
- €g accounting, payroll, sales order processing, etc. The functions
performed by the package may be generalised to meet the
requirements of a large number of organisations but paramete-
rised to cater for the individual needs of each organisation. The
cost of developing the package gets distributed over the user
organisations. The application packages involve low capital cost,
are available for immediate implementation, and eliminate the
need for internal expertise of developing and maintaining
software.

A large variety of application packages are currently marketed.
These include: basic accounting functions (general ledger,
accounts receivable, accounts payable, payroll, fixed assets, etc);
manufacturing operations (bill of materials, inventory control,
materials requirement planning, production scheduling, cost



EVOLUTION OF COMPUTER SYSTEMS 9

accounting, etc); distribution operations (order entry, sales
analysis, route scheduling, etc); finance functions (budgeting,
projections, economic analysis, etc); and a host of other
functions. In addition, general-purpose application packages like
spreadsheet, word processing, data management, office systems.
etc can be used for a wide range of tasks.

A number of software tools have been developed to support
and/or automate the process of software development. Significant
among these are the ‘code generators’ and ‘application gener-
ators’. Code generators produce applications in the form of a
high-level language program (or possibly a low-level language
program), usually for subsequent translation and/or execution
independent of the parent tool. Therefore the application is a
separate piece of stand-alone software which could have been
produced by hand-coding techniques. Application generators, on
the other hand, incorporate a translator and also control
execution of the generated application. Hence the generator and
the application are both required to be present at run time. The
code generator produces commonly used high-level languages
such as COBOL or BASIC. The application generator either has
an internal translation facility which generates the machine code
or, more usually, interprets parameter tables at run time. The
user feeds the requirements through an interactive terminal
under the control of the tool, by the methods of form filling,
. screen painting, questionnaire or a set of commands.

Screen painting uses a video display screen to simulate a screen
or a page which is to be developed for an application. The
generator allows the developer to configure the layout of the
applications display or page (for a report) by presenting a blank
screen initially on which the developer ‘paints’ or places, using
cursor commands or keys, the required information in the
appropriate positions.

Form-filling (or fill-in-the-blanks) is another widely used
technique for accomplishing a software component definition.
This method also assumes that the generator utilises a visual
display unit, and in this case the screen presented to the
developer is not blank, as for screen painting, but is pre-
formatted with available options.



10 MANAGEMENT HANDBOOK OF COMPUTER USAGE

The questionnaire approach again presumes that the developer
is working at a visual display terminal. The particular aspects of
the application under development are presented in the form of a
series of questions requiring usually an affirmative or a negative
response from the developer. Otherwise, it may present a set of
options in the form of a ‘menu’ to the developer who may select
the option(s) from the menu by depressing selected keys.

The command language approach is the same as that used in
conventional high-level language programming except that the
commands used are likely to be less procedural. This method can
be used for any of the components of an application software
package and can also be used off-line (non-interactively) as well
as on-line (interactively); so in that sense it is a very flexible
method. :

DEVELOPMENTS IN TELECOMMUNICATIONS

Telecommunication systems such as telephone, telegraph or
radio transmission systems have existed for many decades. The
early communication systems used analogue signals to carry
information. An analogue signal is continuously variable: the
waveform is analogous to the information being transmitted. For
example, the loudness and the pitch of the speech are reflected in
the variation of the amplitude and frequency of the correspond-
ing speech signal. An analogue signal is generated by an analogue
device such as the microphone in a telephone handset.

Analogue transmission is not very suitable for transmitting data
over long distances. Firstly, the transmission environment is
sensitive to outside interference which affects the signal wave-
form and distorts the message being transmitted. Secondly,
analogue signals need to undergo staged amplification to restore
signal strength when transmitted over long distances and this
creates a cumulative build-up of errors due to noise interference.

The need for utmost accuracy in data communication led to the
concept of digital transmission. Digital transmission is far more
tolerant of the effects of outside interference because the receiver
simply needs to distinguish between discrete signai levels. Digital
transmission also makes more efficient use of the transmission
medium so that many times more information can be sent on the



