E B R & =%

The Art of UNIX Programming

UNIX

FEIFULHEAR

(S EIAR )

[ %] Eric S. Raymond 2

The \iitor ==
LNN =B
Programming E

Frie S. Raymond

@%

& -

Software Developmeht
Productivity Award

XZ{Em

3% UNIX % BA# Ken Thompson £ A
13 fif UNIX 558 A #3533 AR H B P se ik

4k Stevens e HXHI UNIX 1Ed
FFiBER AL 30 £ UNIX FRRW > 45
FrhLBERTEAREFEZAR

QR A4 A L
jw@infopﬁower.c‘i&m::n



R M R R = N

The Art of UNIX Programming

UNIX
PP EA
RN i 5T

Eﬂ’fr@@/ﬁi’.%d

www.infopower.com.c



Cro TR T TR b T R e TR Tas e T TR TR T o o~ o= R s e e o R o

The Art of UNIX Programming (ISBN 0-13-142901-9)

Eric S. Raymond

Copyright © 2004 Pearson Education, Inc.

Original English Language Edition Published by Addison Wesley Longman. Inc.

All rights reserved.

Reprinting edition published by PEARSON EDUCATION NORTH ASIA LTD and CHINA ELECTRIC
POWER PRESS, Copyright © 2004.

A AL EIA tH Pearson Education #2801 A7 th RA AL b RS (i, R0 85 AT BUX AN & W X R 4 )
AU, KT,
AL HRAE BT, A8 LR A S a0 & A DR A2

AP RINS 4 Pearson Education BH{8 R %, LB ENGHE.

ALt RBUR FERARE LS BF: 01-2004-2531

For sale and distribution in the People’ s Republic of China exclusively(except Taiwan, Hong Kong SAR and
Macao SAR).

PR Tt NRGSERIE SN R BUEE D R AR 0 IR BTBUS R [N &9 ) B R AT

P ¥R L] (CIP) ¥4

UNIX FERFEE 2R /7 (%) #H3 (Raymond, E. S.) &, —#EIA. —Jbsl: S EHE 4, 2004
(BRRRERT]

ISBN 7-5083-2207-X

LU.. IL . ILUNTX #/FR&%-HEFRIH-%3X V. TP316.8]

AR B T CIP B 4% 5 (2004) 032313 45

M B RIRRERS
B 4 UNIXBEFEHZAR GZERD
%%  #&: (¥) Eric S. Raymond
T Tame: 4Bt
WREAT: ff B E R
bl dbsid S HEM e B HEBUGRT: 100044
Hi%: (010) 88515918 & EH: (010D 88518169
BV W dbpUEEVRENRY)
It A 787X1092  1/16 =y k. 33.5
1 ¥ ISBN 7-5083-2207-X
M K. 200445 AdbsR IR 2004 % 5 HE | WKENR
o e 52,00 T

BT B




To Ken Thompson and Dennis Ritchie,
because vou inspired me.



Preface

Unix is not so much an operating system as an oral history.

-—Neal Stephenson

There is a vast difference between knowledge and expertise. Knowledge lets you de-
duce the right thing to do: expertise makes the right thing a reflex, hardly requiring
conscious thought at all.

This book has a lot of knowledge in it, but it is mainly about expertise. It is going
to try to teach you the things about Unix development that Unix experts know,
but aren’t aware that they know. It is therefore less about technicalia and more
about shared culture than most Unix books—both explicit and implicit culture,
both conscious and unconscious traditions. It is not a ‘how-to’ book, it is a
‘why-to’ book.

The why-to has great practical importance, because far too much software is
poorly designed. Much of it suffers from bloat, is exceedingly hard to maintain,
and is too difficult to port to new platforms or extend in ways the original
programmers didn’t anticipate. These problems are symptoms of bad design. We hope
that readers of this book will learn something of what Unix has to teach
about good design.

This book is divided into four parts: Context, Design, Tools, and Community. The
first part (Context) is philosophy and history, to help provide foundation and motivation
for what follows. The second part (Design) unfolds the principles of the Unix
philosophy into more specific advice about design and implementation. The third part
{Tools) focuses on the software Unix provides for helping you solve problems. The
fourth part (Community) is about the human-to-human transactions and agreements
that make the Unix culture so effective at what it does.

Because this is a book about shared culture, I never planned to write it alone. You
will notice that the text includes guest appearances by prominent Unix developers.

xix



XX

Preface

the shapers of the Unix tradition. The book went through an extended public review
process during which I invited these luminaries to comment on and argue with the
text. Rather than submerging the resuits of that review process in the final version,
these guests were encouraged to speak with their own voices, amplifying and
developing and even disagreeing with the main line of the text.

In this book, when I use the editorial ‘we’ it is not to pretend omniscience but to
reflect the fact that it attempts to articulate the expertise of an entire community.

Because this book is aimed at transmitting culture, it includes much more in the
way of history and folklore and asides than is normal for a technical book. Enjoy;
these things, too, are part of your education as a Unix programmer. No single one of
the historical details is vital, but the gestalt of them all is important. We think it makes
a more interesting story this way. More importantly, understanding where Unix came
from and how it got the way it is will help you develop an intuitive feel for the
Unix style.

For the same reason, we refuse to write as if history is over. You will find an un-
usually large number of references to the time of writing in this book. We do not wish
to pretend that current practice reflects some sort of timeless and perfectly logical
outcome of preordained destiny. References to time of writing are meant as an alert
to the reader two or three or five years hence that the associated statements of fact
may have become dated and should be double-checked.

Other things this book is not is neither a C tutorial, nor a guide to the Unix com-
mands and APL It is not a reference for sed or yacc or Perl or Python. It’s not a network
programming primer, nor an exhaustive guide to the mysteries of X. It’s not a tour of
Unix’s internals and architecture, either. Other books cover these specifics better, and
this book points you at them as appropriate.

Beyond all these technical specifics, the Unix culture has an unwritten
engineering tradition that has developed over literally millions of man-years' of
skilled effort. This book is written in the belief that understanding that tradition,
and adding its design patterns to your toolkit, will help you become a better program-
mer and designer.

Cultures consist of people, and the traditional way to learn Unix culture is from
other people and through the folklore, by osmosis. This book is not a substitute for
person-to-person acculturation, but it can help accelerate the process by allowing you
to tap the experience of others.

1. The three and a half decades between 1969 and 2003 is a long time. Going by the historical
trend curve in number of Unix sites during that period, probably somewhere upwards of fifty
million man-years have been plowed into Unix development worldwide.



Preface xxi

Who Should Read This Book

You should read this book if you are an experienced Unix programmer who is often
in the position of either educating novice programmers or debating partisans of other
operating systems, and you find it hard to articulate the benefits of the Unix approach.

You should read this book if you are a C, C++, or Java programmer with experience
on other operating systems and you are about to start a Unix-based project.

You should read this book if you are a Unix user with novice-level up to middle-
level skills in the operating system, but little development experience, and want to
learn how to design software effectively under Unix.

You should read this book if you are a non-Unix programmer who has figured out
that the Unix tradition might have something to teach you. We believe you’re right,
and that the Unix philosophy can be exported to other operating systems. So we will
pay more attention to non-Unix environments (especially Microsoft operating systems)
than is usual in a Unix book; and when tools and case studies are portable, we say so.

You should read this book if you are an application architect considering platforms
or implementation strategies for a major general-market or vertical application. It will
help you understand the strengths of Unix as a development platform, and of the Unix
tradition of open source as a development method.

You should rot read this book if what you are looking for is the details of C coding
or how to use the Unix kernel API. There are many good books on these topics; Ad-
vanced Programming in the Unix Environment [Stevens92] is classic among explo-
rations of the Unix APL, and The Practice of Programming [Kernighan-Pike99] is
recommended reading for all C programmers (indeed for all programmers in
any language).

How to Use This Book

This book is both practical and philosophical. Some parts are aphoristic and general,
others will examine specific case studies in Unix development. We will precede or
follow general principles and aphorisms with examples that illustrate them: examples
drawn not from toy demonstration programs but rather from real working code that
is in use every day.

We have deliberately avoided filling the book with lots of code or specification-
file examples, even though in many places this might have made it easier to write
(and in some places perhaps easier to read'). Most books about programming give
too many low-level details and examples, but fail at giving the reader a high-level feel
for what is really going on. In this book, we prefer to err in the opposite direction.



xxii

Preface

Therefore, while you will often be invited to read code and specification files, re-
latively few are actually included in the book. Instead, we point you at examples on
the Web.

Absorbing these examples will help solidify the principles you learn into semi-
instinctive working knowledge. Ideally, you should read this book near the console
of a running Unix system, with a Web browser handy. Any Unix will do, but the
software case studies are more likely to be preinstalled and immediately available for
inspection on a Linux system. The pointers in the book are invitations to browse and
experiment. Introduction of these pointers is paced so that wandering off to explore
for a while won’t break up exposition that has to be continuous.

Note: While we have made every effort to cite URLs that should remain stable
and usable, there is no way we can guarantee this. If you find that a cited link has
gone stale, use common sense and do a phrase search with your favorite Web search
engine. Where possible we suggest ways to do this near the URLs we cite.

Most abbreviations used in this book are expanded at first use. For convenience,
we have also provided a glossary in an appendix.

References are usually by author name. Numbered footnotes are for URLs that
would intrude on the text or that we suspect might be perishable; also for asides, war
stories, and jokes.?

To make this book more accessible to less technical readers, we invited some non-
programmers to read it and identify terms that seemed both obscure and necessary to
the flow of exposition. We also use footnotes for definitions of elementary terms that
an experienced programmer is unlikely to need.

Related References

Some famous papers and a few books by Unix’s early developers have mined this
territory before. Kemighan and Pike’s The Unix Programming Environment
[Kernighan-Pike84] stands out among these and is rightly considered a classic. But
today it shows its age a bit; it doesn’t cover the Internet, and the World Wide Web or
the new wave of interpreted languages like Perl, Tcl, and Python.

About halfway into the composition of this book, we learned of Mike Gancarz’s
The Unix Philosophy [Gancarz). This book is excellent within its range, but did not
attempt to cover the full spectrum of topics we felt needed to be addressed.
Nevertheless we are grateful to the author for the reminder that the very simplest Unix
design patterns have been the most persistent and successful ones.

2. This particular footnote is dedicated to Terry Pratchett, whose use of footnotes is
quite...inspiring.



Preface

xxiii

The Pragmatic Programmer [Hunt-Thomas] is a witty and wise disquisition on
good design practice pitched at a slightly different level of the software-design craft
(more about coding, less about higher:level partitioning of problems) than this book.
The authors’ philosophy is an outgrowth of Unix experience, and it is an excellent
complement to this book.

The Practice of Programming [Kernighan-Pike99] covers some of the same ground
as The Pragmatic Programmer from a position deep within the Unix tradition.

Finally (and with admitted intent to provoke) we recommend Zen Flesh, Zen Bones
[Reps-Senzaki], an important collection of Zen Buddhist primary sources. References
to Zen are scattered throughout this book. They are included because Zen provides a
vocabulary for addressing some ideas that turn out to be very important for software
design but are otherwise very difficult to hold in the mind. Readers with religious
attachments are invited to consider Zen not as a religion but as a therapeutic form of
mental discipline—which, in its purest non-theistic forms, is exactly what Zen is.

Conventions Used in This Book

The term “UNIX™ is technically and legally a trademark of The Open Group, and
should formally be used only for operating systems which are certified to have passed
The Open Group’s elaborate standards-conformance tests. In this book we use “Unix”
in the looser sense widely current among programmers, to refer to any operating
system (whether formally Unix-branded or not) that is either genetically descended
from Bell Labs’s ancestral Unix code or written in close imitation of its descendants.
In particular, Linux (from which we draw most of our examples) is a Unix under
this definition. '

This book employs the Unix manual page convention of tagging Unix facilities
with a following manual section in parentheses, usually on first introduction when
we want to emphasize that this is a Unix command. Thus, for example, read
“munger(1)” as “the ‘munger’ program, which will be documented in section 1 (user
tools) of the Unix manual pages, if it's present on your system”. Section 2 is C system
calls, section 3 is C library calls, section 5 is file formats and protocols, section 8 is
system administration tools. Other sections vary among Unixes but are not cited in
this book. For more, type man 1 man at your Unix shell prompt (older System V
Unixes may require man ~s 1 man).

Sometimes we mention a Unix application (such as Emacs), without a manual-
section suffix and capitalized. This is a clue that the name actually represents a well-
established family of Unix programs with essentially the same function, and we are
discussing generic properties of all of them. Emacs, for example, includes xemacs.

At various points later in this book we refer to ‘old school’ and ‘new school’
methods. As with rap music, new-school starts about 1990. In this context, it’s



xxiv

Preface

associated with the rise of scripting languages, GUIs, open-source Unixes, and the
Web. Old-school refers to the pre- 1990 (and especially pre-1985) world of expensive
(shared) computers, proprietary Unixes, scripting in shell, and C everywhere. This
difference is worth pointing out because cheaper and less memory-constrained ma-
chines have wrought some significant changes on the Unix programming style.

Our Case Studies

A lot of books on programming rely on toy examples constructed specifically to prove
a point. This one won’t. Our case studies will be real, pre-existing pieces of software
that are in production use every day. Here are some of the major ones:

cdrtools/xcdroast
These two separate projects are usually used together. The cdrtools package
is a set of CLI tools for writing CD-ROMs; Web search for “cdrtools”. The
xcdroast application is a GUI front end for cdrtools; see the xcdroast project
site <http://www.xcdroast.org/>.

fetchmail
The fetchmail program retrieves mail from remote-mail servers using the
POP3 or IMAP post-office protocols. See the fetchmail home page
<http://www.catb.org/~esr/fetchmail> (orsearch for “fetchmail”
on the Web).

GIMP
The GIMP (GNU Image Manipulation Program) is a full-featured paint, draw,
and image-manipulation program that can edit a huge variety of graphical
formats in sophisticated ways. Sources are available from the GIMP home page
<http://www.gimp.org/> (or search for “GIMP” on the Web).

mutt
The mutr mail user agent is the current best-of-breed among text-based Unix
electronic mail agents, with notably good support for MIME (Multipurpose In-
ternet Mail Extensions) and the use of privacy aids such as PGP (Pretty Good
Privacy) and GPG (GNU Privacy Guard). Source code and executable binaries
are available at the Mutt project site <http: //www.mutt .org>.

xmlto
The xmlto command renders DocBook and other XML documents in various
output formats, including HTML and text and PostScript. For sources and



Preface

XXV

documentation, see the xmlto project site <http://cyberelk.net/
tim/xmlto/>.

To minimize the amount of code the user needs to read to understand the examples,
we have tried to choose case studies that can be used more than once, ideally to illus-
trate several different design principles and practices. For this same reason, many of
the examples are from my projects. No claim that these are the best possible ones is
implied, merely that I find them sufficiently familiar to be useful for multiple exposi-

tory purposes.

Author’s Acknowledgements

The guest contributors (Ken Arnold, Steven M. Bellovin, Stuart Feldman, Jim Gettys,
Steve Johnson, Brian Kernighan, David Korn, Mike Lesk, Doug Mcllroy, Marshall
Kirk McKusick, Keith Packard, Henry Spencer, and Ken Thompson) added a great
deal of value to this book. Doug Mcllroy, in particular, went far beyond the call of
duty in the thoroughness of his critique and the depth of his contributions, displaying
the same care and dedication to excellence which he brought to managing the original
Unix research group thirty years ago.

Special thanks go to Rob Landley and to my wife Catherine Raymond, both of
whom delivered intensive line-by-line critiques of manuscript drafts. Rob’s insightful
and attentive commentary actually inspired more than one entire chapter in the final
manuscript, and he had a lot to do with its present organization and range; if he had
written all the text he pushed me to improve, I would have to call him a co-author.
Cathy was my test audience representing nontechnical readers; to the extent this book
is accessible to people who aren’t already programmers, that’s largely her doing.

This book benefited from discussions with many other people over the five years
it took me to write it. Mark M. Miller helped me achieve enlightenment about threads.
John Cowan supplied some insights about interface design patterns and drafted the
case studies of wily and VM/CMS, and Jef Raskin showed me where the Rule of Least
Surprise comes from. The UIUC System Architecture Group contributed useful
feedback on early chapters. The sections on What Unix Gets Wrong and Flexibility
in Depth were directly inspired by their review. Russell J. Nelson contributed the
material on Bernstein chaining in Chapter 7. Jay Maynard contributed most of the
material in the MVS case study in Chapter 3. Les Hatton provided many helpful
comments on the Languages chapter and motivated the portion of Chapter 4 on Optimal
Module Size. David A. Wheeler contributed many perceptive criticisms and some
case-study material, especially in the Design part. Russ Cox helped develop the survey
of Plan 9. Dennis Ritchie corrected me on some historical points about C.



XXvi

Preface

Hundreds of Unix programmers, far too many to list here, contributed advice and
comments during the book’s public review period between January and June of 2003.
As always, I found the process of open peer review over the Web both intensely
challenging and intensely rewarding. Also as always, responsibility for any errors in
the resulting work remains my own.

The expository style and some of the concerns of this book have been influenced
by the design patterns movement; indeed, I flirted with the idea of titling the book
Unix Design Patterns. 1 didn’t, because 1 disagree with some of the implicit central
dogmas of the movement and don't feel the need to use all its formal apparatus or
accept its cultural baggage. Nevertheless, my approach has certainly been influenced
by Christopher Alexander’s work® (especially The Timeless Way of Building and
A Pattern Language), and I owe the Gang of Four and other members of their school
a large debt of gratitude for showing me how it is possible to use Alexander’s insights
to talk about software design at a high level without merely uttering vague and useless
generalities. Interested readers should see Design Patterns: Elements of Reusable
Object-Oriented Software [GangOfFour] for an introduction to design patterns.

The title of this book is, of course, a reference to Donald Knuth’s The Art of
Computer Programming. While not specifically associated with the Unix tradition,
Knuth has been an influence on us all.

Editors with vision and imagination aren’t as common as they should be. Mark
Taub is one; he saw merit in a stalled project and skillfully nudged me into finishing
it. Copy editors with a good ear for prose style and enough ability to improve writing
that isn’t like theirs are even less common, but Mary Lou Nohr makes that grade.
Jerry Votta seized on my concept for the cover and made it look better than I had
imagined. The whole crew at Addison-Wesley gets high marks for making the edito-
rial and production process as painless as possible, and for cheerfully accommodating
my control-freak tendencies not just over the text but deep into the details of the
book’s visual design, art, and marketing.

3. An appreciation of Alexander’s work, with links to on-line versions of significant portions,
may be found at Some Notes on Christopher Alexander <http: / /www.math.utsa.edu/
sphere/salingar/Chris.text.html>.



Contents

PrEfACE ..o e e e e XXV
I CONEXL .o 1
1 Philosophy: Philosophy Matters ..o 3
1.1 Culture? What CURUIE? .......ccceiiiiieiie e csree e 3
1.2 The Durabitity of UNiX .......c.ooieiiiiiiie e 4
1.3 The Case against Learning Unix Culture .............ccceoenienenncnn. 5
1.4 What Unix Gets WIONG .........coiiiiiie e e 6
1.5  What Unix Gets Right ..ot csiee e 7
1.5.1 Open-Source Software ....................ccoovvvvvercciinien e 7
1.5.2  Cross-Platform Portability and Open Standards ............... 8
1.5.3 The internet and the World Wide Web ................cccccee... 8
1.5.4  The Open-Source COmMmMUNItY ........coovvieiiivniceiiiieennen 9
1.5.5  Flexibility All the Way Down ...........oooiivniciien e, 9
1.56  Unixis FUNTOHACK .....oocivviiieciie e 10
1.5.7  The Lessons of Unix Can Be Applied Elsewhere ............. 11
1.6 Basics of the Unix PhIlOSOPhY .....cccoccivviciii e snniies e 11
1.6.1 Rule of Modularity: Write simple parts connected by clean
INErfaces. ... 14
1.6.2  Rule of Clarity: Clarity is better than cleverness. .............. 14
1.6.3  Rule of Composition: Design programs to be connected
with other programs. ..........ccccccviiiiiiiiiiner e, 15
1.6.4  Rule of Separation: Separate policy from mechanism;
separate interfaces from engines. .......cccceceienviiiiiviiennnn. 16
1.6.5 Rule of Simplicity: Design for simplicity; add complexity
Only WNere YOU IMUSL. .......coooiiiiiiiiieieeeee e rearinrene e e s e 17



Contents

1.6.6  Rule of Parsimony: Write a big program only when it is clear
by demonstration that nothing eise wilt do. .......................
1.6.7  Rule of Transparency: Design for visibility to make
inspection and debugging easier. ..............ccoccee v
1.6.8  Rule of Robustness: Robustness is the child
of transparency and simpliCity. .............cccocevreiniieniciece.
1.6.9 Rule of Representation: Fold knowledge into data,
so program logic can be stupid and robust. ......................
1.6.10 Rule of Least Surprise: In interface design, always do
the least surprising thing. ...........cooe e,
1.6.11  Rule of Silence: When a program has nothing surprising
to say, it should say nothing. ................ccoocciiiii,
1.6.12 Rule of Repair: Repair what you can—but when you must
fail, fail noisilty and as soon as possible. ..........ccccoreenne.
1.6.13 Rule of Economy: Programmer time is expensive; conserve
it in preference to machine time. .........cccooovvvveeiinienenn
1.6.14 Rule of Generation: Avoid hand-hacking; write programs
to write programs When yOuU Can. .........c.cccceevvvinrecinnsenien
1.6.15 Rule of Optimization: Prototype before polishing. Get it
working before you optimize it. ..........cccociciiiiin i
1.6.16 Rule of Diversity: Distrust all claims for “one true way”. ....
1.6.17 Rule of Extensibility: Design for the future, because it will
be here sooner than you think. .................cooiiiien,

1.7 The Unix Philosophy in One Lesson ...........cccecev v iiieeveviee e
1.8  Applying the Unix PhiloSOPhy ........cccccovieieiiiiniieiiieie e
1.9 Attitude Matters ToO ........ocoeoieiiieiccce e,
History: A Tale of TWO CURUIES ..............ccocoouveeeieeeeeseeeeeeeeeeeeee

2.1 Origins and History of Unix, 1969-1995 .................................
211 Genesis: 1969-1971 ...
212 Exodus: 1971-1980 .....cccceoviivieiiiicie e
2.1.3 TCPAP and the Unix Wars: 1980-1990 ..........ccceevvernne.
2.1.4  Blows against the Empire: 1991-1995 .........c.ccooviveeinnenne.

2.2 Origins and History of the Hackers, 1961—-1995 ............c.ccccvueeneennn.
221  AtPlayin the Groves of Academe: 1961-1980 ................

222 Internet Fusion and the Free Software Movement:
19811991 Lo

18

18

18

18

20

20

21

22

22

23
24

24
25
26
26
29

29
30
32
35
41

43
44



Contents vii

2.4  The Lessons of Unix HIStOry ... 51
3  Contrasts: Comparing the Unix Philosophy with Others ...l 53
3.1 The Elements of Operating-System Style ..........coovimiviiiiinnn 53
3.1.1  What Is the Operating System’s Unifying Idea? ............... 54

3.1.2  Multitasking Capability ................ccooiiiiiiiin 54

3.1.3  Cooperating ProCeSSES ..........cccocevviieieriniiiineneee e 55

3.1.4 Internal Boundaries ............ccccoccieieeiiieiinc e 57

3.1.5 File Attributes and Record Structures ............ccccoeei 57

3.1.6 Binary File Formats .............ccocooiiiiiiii 58

3.1.7 Preferred User Interface Style ..o 58

3.1.8  Intended AUIENCE ........ccoiiviciiiiii i 59

3.1.9  Entry Barriers to Development ..o 60

3.2  Operating-System COMPAriSONS ...cccccceevriiereeiisierreisronenneesinrie e 61
B2 VMS e 61

322 MACOS e e 64

3283 O8/2 e 65

324 WIndows NT . 68

325  BeOS s 71

B.2.8  MVS e e 72

3.27  VM/ICMS .ot e e e 74

3.2.8  LINUX oot e 76

3.3  What Goes Around, COmMESs ArOUNG .......c...ccccoreeemnccrrerrrenensenienenens 78
Il DESIgN oo 81
4  Modularity: Keeping It Clean, Keeping It Simple ............coooiiiiiin 83
4.1 Encapsulation and Optimal Module Size ...............coocveivieiiinnn. 85
4.2 Compactness and Orthogonality ..............cccceeicieciininiiineceen 87
421  COMPACINESS ...c..ooiciiiiie e 87

422 Orthogonality ......cccoooeiiiiiiiiiii e 89

423 The SPOT RUIE ..coocieieiieeeie e e 91

4.2.4 Compactness and the Strong Single Center .................... 92

425 The Value of Detachment ..............ccooeiviiniiniir e 94

4.3 Software Is a Many-Layered ThiNG .....c..c.ccooiiiiicinncnncennsneneee s 95
431  Top-Down versus Bottom-Up .........c.cccovviciiniiiiine e 95

4.3.2  GHUE LAYEIS .....oooiiiiiiiieiie e 97

4.3.3 Case Study: C Considered as Thin Glue ......................... 98



viii

Contents

4.4 LIDIAMES .ovvviiiiie ettt et et e e e 99
4.4.1  Case Study: GIMP Plugins .........ccccoviviiiiiienieenieciie e 100
4.5 Unix and Object-Oriented Languages .........c.ccccvvivereeiininvinnenninie 101
4.6 Coding for ModUIANLY .........occonniiiiiiiei e 103
Textuality: Good Protocols Make Good Practice ...............cccoeeiveenie 105
5.1 The Importance of Being Textual ...........c.coeevvieiiinieinnecene 107
5.1.1  Case Study: Unix Password File Format .......................... 109
51.2 Case Study: .newsrc Format ... 110
5.1.3 Case Study: The PNG Graphics File Format .................... 111
5.2 Data File Metaformats .........cccooooiiiir e 112
521 DSVSHYIE oo 113
522 RFC 822 F0ormat ....ccooecieiiiiieeci et e 114
523 Cookie-dar FOrmat ..........ccocovrieiiiriieniiee i e 115
524 Record-Jar Format .......ccocvciiiiiienniircii e 116
B5.25 XML oot e e s 117
526 Windows INI Format ... 119
5.2.7  Unix Textual File Format Conventions ..........c.cccceeereennene 120
528 The Pros and Cons of File Compression ..........c.cccecevenne. 122
5.3 Application Protocol Design ........cccocveivciiiniiie e 123
53.1  Case Study: SMTP, the Simple Mail Transfer Protocol ..... 124
532 Case Study: POP3, the Post Office Protocol .................... 124

5.3.3 Case Study: IMAP, the Internet Message Access
ProtOCOl ..o s 126
5.4 Application Protocol Metaformats ... ecrecenvnnens 127
5.41  The Classical Internet Application Metaprotocol .............. 127
542 HTTP as a Universal Application Protocol ........................ 128
5.4.3 BEEP: Blocks Extensible Exchange Protocol .................. 130
544 XML-RPC, SOAP and Jabber ..........cccooiviiiiiiiicinni 131
Transparency: Let There Be Light ..........ccooceeriiiiiiiie e 133
6.1 StUdYiNG CaSES ....eeoviiiieiieieeie e e 135
6.1.1  Case Study: audacity .......c.cccooveceiivniniiieicce, 135
6.1.2  Case Study: fetchmail's —v option ..........cccoevvvieverecrianee. 136
6.1.3 Case Study: GCC ...t 139
6.1.4  Case Study: KMail ..........cooeivviee e 140
6.1.5  Case Study: SNG ..o e e 142
6.1.6  Case Study: The Terminfo Database ...........cc.cccceveeien.n. 144

6.1.7  Case Study: Freeciv Data Files .............ccccoevvmiiinnnncns 146



Contents

ix

6.2 Designing for Transparency and Discoverability .................c......... 148
6.2.1  The Zen of Transparency ...........ccccccvmiimninvinnimiiceennicnne, 149
6.2.2 Coding for Transparency and Discoverability .................... 150
6.2.3  Transparency and Avoiding Overprotectiveness ............... 151
6.2.4  Transparency and Editable Representations ................... 152
6.2.5  Transparency, Fault Diagnosis, and Fault Recovery ......... 153
6.3 Designing for Maintainability ........cccccccoveiiiiiiiniiiii e 154
Multiprogramming: Separating Processes to Separate Function ............. 1567
7.1 Separating Complexity Control from Performance Tuning .............. 159
7.2 Taxonomy of Unix IPC Methods ..........cccoenviiiincieinciie e, 160
7.2.1  Handing off Tasks to Specialist Programs ...........cc.cc........ 160
7.2.2  Pipes, Redirection, and Filters ...........c..ccooeceniivne e, 161
7.2.3  WIAPPEIS .ottt ee e e e e 166
7.2.4  Security Wrappers and Bernstein Chaining ...................... 167
725  Slave PrOCESSES ...cocciiiiieeiiieeiceieeeeee e e svae s 168
726  Peer-to-Peer Inter-Process Communication ..................... 169
7.3 Problems and Methods to Avoid .............ccoeeieriiniin e 176
7.3.1  Obsolescent Unix IPC Methods ..........cccceovvvieiiineccinr e 176
7.3.2 Remote Procedure Calls ..........cooovrivenrinvcrncnncnneinenenenns 178
7.3.3 Threads—Threat or Menace? ..........ccccvcvevveciniininennenens 180
7.4 Process Partitioning at the Design Level ...........ccccccviviiineicinnnnn, 181
Minilanguages: Finding a Notation That Sings ..........ccccecivenievveree e, 183
8.1 Understanding the Taxonomy of Languages .........ccoeeveverevenncennias 185
8.2  Applying Minilanguages ......cccccceeviive et eceececrn s e 187
8.2.1  Case StUY: SHG ...c.ccovvvveriee it creere e 187
8.2.2 Case Study: Regular EXpressions ..........cccccoovvnrvrcrnnnan. 188
823 CaseStudy: Glade .............coveveceveieicceieeieeee e 191
824 CaseStudy:md ......cooovoiiiiecece e, 193
8.2.5 Case Study: XSLT ...coceoiviiiieeieer e 194
8.2.6  Case Study: The Documenter's Workbench Tools ............ 195
8.2.7  Case Study: fetchmail Run-Control Syntax .................... 199
8.2.8 Case Study: awk .....ccccccceeiieicici e 200
8.2.9  Case Study: POSISCript ......ccceovieeieecie e 202
8.2.10 Case Study:bcand dc .........ccoooooooooieeeeeerivie e 203
8.2.11 Case Study: EMacs LiSP -....cceeveimrierereeiece e 205
8.2.12 Case Study: JavaScript .........cccocoirrviviviien e 205
8.3 Designing Minilanguages ............cccecererieeiieieeceinee e 206



