Collected Papers on Snake Venoms

Contributions from The Pharmacological Institute, National Taiwan University, Taipei, Taiwan, China, 1948-1973

> Edited by C. Y. Lee, C. Ouyang and C. C. Chang

Collected Papers on Snake Venoms

Contributions from The Pharmacological Institute, National Taiwan University, Taipei, Taiwan, China. 1948-1973.

> Edited by C. Y. Lee, C. Ouyang and C. C. Chang

Dedicated with affection and respect to

Professor Tsungming Tu

in celebration of his eightieth birthday,
who initiated pharmacological studies on
snake venoms in Taiwan.

CONTENTS

REVIEWS PROTECTION OF BURNESS OF STREET

Lee,	C.Y. (1970) Elapid Neurotoxins and Their Mode of Action. In: "Snakebite and Snake Venoms", edited by Minton, Clin. Toxicol. 3: 457-472
Lee,	C.Y. (1971) Mode of Action of Cobra Venom and Its Purified Toxins. In: Neuropoisons. vol. 1, edited by L.L. Simpson (Plenum Press, New York) pp. 21-70
Lee,	C.Y. (1972) Recent Advances in Chemistry of Polypeptide Toxins from Snake Venoms. J. Chinese Biochem. Soc., 1:47-56 67 - 76
Lee,	C.Y. (1972) Classification of Polypeptide Toxins from Elapid and Sea Snake Venoms According to Their Pharmacological Properties and Chemical Structures. J. Formosan Med. Assoc., 71: 311-317
Lee,	C.Y. (1972) Chemistry and Pharmacology of Polypeptide Toxins in Snake Venoms. Ann. Rev. Pharmacol., 12: 265-286.84 - 105
_ee,	C.Y. (1973) Chemistry and Pharmacology of Purified Toxins from Elapid and Sea Snake Venoms. 5th Int. Congr. Pharmacology, San Francisco 1972, 2: pp. 210-232106 - 128
Lee,	C.Y. (1965) Studies on the Neurotoxins Isolated from the Elapine Venoms. J. Showa Med. Ass., 23: 221-229129 - 137
	CHEMICAL STUDIES ON ELAPIDAE VENOMS AND
Ueda	, E., Sasaki, T. and Peng, M.T. (1951) A Chemical Study on Formosan Cobra Venom. J. Formosan Med. Assoc., 1: 194-199.138 - 143
Chang	g, C.C. & Lee, C.Y. (1955) Cholinesterase and Anticholin- esterase Activities in Snake Venoms. J. Formosan Med. Assoc,, 54: 103-112144 - 153
Lee,	C.Y., Chang, C.C. & Kamijo, K. (1956) Cholinesterase Inactivation by Snake Vnoms. Biochem. J., 62: 582-588154 - 160
Wei,	A-Li & Lee, C.Y. (1965) A Nucleoside Isolated from the Venom of Bungarus multicinctus. Toxicon, 3: 1-4161 - 164
	Formosan Cobra (Naja naja atra) Venom. Part 1. Chromatographic Separation of Crude Venom on CM-Sephadex and Preliminary Characterization of Its Components. J. Chinese Chem. Soc., 13: 25-37

Hamaguchi, K., Ikeda, K. & Lee, C.Y. (1968) Optical Rotatory Dispersion and Circular Dichroism of Neurotoxins Isolated from the Venom of Bungarus multicinctus. J. Biochem., 64: 503-506	_	181
Narita, K. & Lee, C.Y. (1970) The Amino Acid Sequence of Cardiotoxin from Formosan Cobra (Naja naja atra) Venom. Biochem. Biophys. Res. Comm., 41: 339-343182	0. 10	186
Mebs, D., Narita, K. & Lee, C.Y. (1971) Amino Acid Sequence of α-bungarotoxin from The Venom of Bungarus multicinctus. Biochem. Biophys. Res. Comm., 44: 711-716		192
Shiau Lin, S.Y. & Lee, C.Y. (1971) Are Neurotoxins from Elapid Venoms Glycoproteins ? Toxicon, 9: 295-296193		194
Lee, C.Y., Chang, S.L., Kau, S.T. & Luh, S.H. (1972) Chromato-graphic Separation of the Venom of Bungarus multicinctus and Characterization of Its Components. J. Chromatogr., 72: 71-82	lo:	206
Mebs, D., Narita, K., Iwanaga, S., Samejima, Y. & Lee, C.Y.(1972) Purification, Properties and Amino Acid Sequence of α- bungarotoxin from the Venom of Bungarus multicinctus. Hoppe-Seyler's Z. Physiol. Chem. Bd., 353: 243-262207	kol	226
Narita, K., Mebs, D., Iwanaga, S., Samejima, Y. & Lee, C.Y.(1972) Primary Structure of α-Bungarotoxin from Bungarus multicinctus Venom. J. Formosan Med. Assoc., 71: 336-343227	[οι γ 5 Τ	234
PHARMACOLOGICAL STUDIES ON <i>ELAPIDAE</i> VENOMS (1) Neurotoxins		
Peng, M.T. (1951) A Toxicological Study on the Fractionated Venom on Naja naja atra. Memoirs of the Faculty of Medicine, National Taiwan University 1: 200-213	E. or or	248
Peng, M.T. (1952) Action of the Venom of Naja naja atra on Respiration and Circulation. Memoirs of the Faculty of Medicine, National Taiwan University, 2: 170-183249		
Chang, C.C. (1960) Studies on the Mechanism of Curare-like Action of Bungarus multicinctus Venom. I. Effect on the Phrenic Nerve-diaphragm Preparation of the Rat. J. Formo- san Med. Assoc., 59: 315-323	una T	271
Chang, C.C. (1960) Studies on the Mechanism of Curare-like Action of Bungarus multicinctus Venom. II. Effect on Response of Rectus Abdominis Muscle of the Frog to Acetyl- choline. J. Formosan Med. Assoc., 59: 416-426		

	Lee,	C.Y., Chang, C.C. & Su, C. (1960) Effect of Group Specific Reagents on Toxicity and Curare-like Activity of Elapid Venoms. J. Formosan Med. Assoc., 59: 1065-1072280	4-	287
	Su, C	C. (1960) Mode of Curare-like Action of Cobra Venom. J. Formosan Med. Assoc., 59: 1083-1091288	MAL	296
	Lee,	C.Y. & Peng, M.T. (1961) An Analysis of the Respiratory Failure Produced by the Formosan Elapid Venoms. Arch. int. Pharmacodyn., 133: 180-192	S	309
	Lee,	C.Y., Chang, C.C., Su, C. & Chen, Y.W. (1962) The Toxicity and Thermostability of Formosan Snake Venoms. J. Formosan Med. Assoc., 61: 239-244	7. B.L.	315
	Chang	the Venom of Bungarus multicinctus and their Modes of Neuromuscular Blocking Action. Arch. int. Pharmacodyn., 144: 241-257	0 200	332
	Chang	Neuromuscular Blocking Action of Cobra Neurotoxin. Br. J. Pharmac. Chemother., 28: 172-181		342
	DATE:	C.Y. & Chang, C.C. (1966) Modes of Actions of Purified Toxins from Elapid Venoms on Neuromuscualar Transmission. Mem. Inst. Butantan Simp. Internac., 33(2): 555-572343	2 1	360
	Lee,	C.Y. & Tseng, L.F. (1966) Distribution of Bungarus multi- cinctus Venom Following Envenomation. Toxicon, 3: 281-290-361		371
		C.Y. & Tseng, L.F. (1967) Influence of Denervation on Localization of Neurotoxins from Elapid Venoms in Rat Diaphragm. Nature, 215: 1177-1178	N P	373
	Su, C	., Chang, C.C. & Lee, C.Y. (1967) Pharmacological Properties of the Neurotoxins of Cobra Venom. In "Animal Toxins" Pergamon Press, Oxford & New York, 259-267	P. Carlot	382
		J. L.F., Chiu, T.H. & Lee, C.Y. (1968) Absorption and Distribution of 131I-labeled Cobra Venom and Its Purified Toxins. Toxic. Applied Pharmac., 13: 526-535383		392
1		T.C. & Lee, C.Y. (1969) Effect of Whole and Fractionated Cobra Venom on Sympathetic Ganglionic Transmission. Europ. J. Pharmacol., 8: 326-330	-3	397
	Lee,	C.Y. & Tseng, L.F. (1969) Species Differences in Susceptibility to Elapid Venoms. Toxicon, 7: 89-93398	i A	402

Changeux, J-P., Kasai, M-8 Lee, - 11. (1970) Usetof a Shake

		yenom Toxin to Characterize the Cholinergic Receptor Protein. Proc. Nat's Acad. Sco., 67: 1241-1247403		09
	Chen	, IL. & Lee, C.Y. (1970) Ultrastructural Changes in the Motor Nerve Terminals Caused by β-Bungarotoxin. Virchows Arch. A.B.Z., 6: 318-325		18
		, I-L. & Lee, C.Y. (1970) Effects of β-Bungarotoxin on Synaptic Vesicles. 2nd Intern. Symp. Animal & Plant Toxins, Tel-Aviv. Israel, 667-673	. 4:	39 J 25
		C.Y., Huang, P-F. & Tsai, M.C. (1971) Mode of Neuromus- cular Blocking Action of the Desert Black Snake Venom. Toxicon, 9: 429-430426 -	42	28
		C.Y., Chang, C.C. & Chen, Y.M. (1972) Reversibility of Neuromuscular Blockade by Neurotoxins from Elapid and Sea Snake Venoms. J. Formosan Med. Assoc., 71: 344-349429 -	ea.	34
		C.Y. & Tsai, M.C. (1972) Does the Desert Black Snake Venoms Inhibit Release of Acetylcholine from Motor Nerve Endings. Toxicon, 10: 659-660	4:	37
1	Chang	g, C.C., Chen, T.F. & Lee, C.Y. (1973) Studies of the Presynaptic Effect of β-Bungarotoxin on Neuromuscular Transmission. J. Pharmacol. Exp. Ther., 184: 339-345438 -	4	44
\ \ !		g, C.C., Chen, T.F. & Chuang, S.T. (1973) Influence of Chronic Neostigmine Treatment on the Number of Acetylcholine Receptors and the Release of Acetylcholine from the Rat Diaphragm. J. Physiol. Lond., 230: 613-618445		50
	Chang ETE	g, C.C., Chen, T.F. & Chuang, S.T. (1973) N,O-Di and N,N,O Tri ³ H-acetyl-α-bungarotoxin as Specific Labelling Agents of Cholinergic Receptors. Br. J. Pharmac., 47: 147-160451 -	46	64
	Chang 382	g, C.C., Huang, M.C. & Lee, C.Y. (1973) Mutual Antagonism Between Botulinum Toxin and β-Bungarotoxin. Nature, 243: 166-167·································		
		- L.F., Chiu, T.H. & Lee, C.Y. (1908) Absorption and		
	392	PHARMACOLOGICAL STUDIES ON ELAPIDAE VENOMS		
		(2) Cardiotoxin		
	397	C.Y., Chang, C.C., Chiu, T.H., Chiu, P.J.S., Tseng, T.C. & Lee, S.Y. (1968) Pharmacological Properties of Cardiotoxin Isolated from Formosan Cobra Venom. Naunyn-Schmiedebergs Arch. Pharmak. u. exp. Path. 259: 360-374	/1.5	
		C.Y., Lin, J.S. & Wei, J.W. (1970) Identification of Cardiotoxin with Cobramine B, DLF, Toxin γ and Cobra Venom Cytotoxin. 2nd Intern. Symp. Animal & Plant Toxins, Tel-Aviv Israel, 307-318483 -		94

Chang, C.C., Wei, J.W., Chuang, ST. & Lee, C.Y. (1972) Are the Blockade of Nerve Conduction and Depolarization of Skeletal Muscle Induced by Cobra Venom Due to Phospholipase A, Neurotoxin or Cardiotoxin? J. Formosan Med. Assoc., 71: 323-327
Chang, C.C., Chuang, ST., Lee, C.Y. & Wei, J.W. (1972) Role Cardiotoxin and Phospholipase A in the Blockade of Nerve Conduction and Depolarization of Skeletal Muscle Induced by Cobra Venom. Br. J. Pharmac., 44: 752-764500 - 512
Lai, M.K., Wen, C.Y. & Lee, C.Y. (1972) Local Lesions Caused by Cardiotoxin Isolated from Formosan Cobra Venom. J. Formosan Med. Assoc., 71: 328-332513
Lee, C.Y., Lin, J.S. & Lin Shiau, SY. (1972) A Study of Carcinolytic Factor of Formosan Cobra Venom. Proc. Nat'l Sci. Counc., 5: 9-14
Lin Shiau, S.Y., Huang, MC. & Lee, C.Y. (1972) Isolation of Cardiotoxic and Neurotoxic Principles from the Venom of Bungarus fasciatus. J. Formosan Med. Assoc., 71: 350-357524 - 531
CROTALIDAE AND VIPERIDAE
Ouyang, C., Teng, C.M. & Hong, J.S. (1972) Purification and Properties of the Goagulant and Anticoagulant Principles
Lee, C.Y. (1948) Toxicological Studies on the Venom of <i>Vipera</i> russellii formosensis Maki. Part I. Toxicity and Pharma- cological Properties. J. Formosan Med. Assoc., 47: 65-84532 - 553
Peng, M.T. (1950) Relation Between the Change of Blood-Sugar Fluctuation and the Production of Immune Bodies by Successive Injections of Trimeresurus mucrosquamatus Venom. J. Formosan Med. Assoc., 49: 215-223554 - 562
Peng, M.T. (1951) Action of the Venom of Trimeresurus mucro- squamatus on Circulation and Respiration. Memoirs of the Faculty of Medicine, National Taiwan University, 1:215-222.563 - 571
Lee, C.Y., Johnson, S.A. and Seegers, W.H. (1955) Clotting of Blood With Russell's Viper Venom. J. Michigan State Soc. Med., 54: 801-804 & 824
Ouyang, C. (1957) The Effect of Formosan Snake Venoms on Blood Coagulation in vitro. J. Formosan Med. Assoc.,56: 435-448577 - 590
Lee, C.Y. & Ouyang, C. (1958) Mechanism of Anticoagulant Action of Snake Venoms. A Comparison of Effects of the Venoms of Naja naja atra (Cobra) and Trimeresurus mucrosquamatus (Habu). Proceedings of the 7th International Congress of the International Society of Hematology 2: 1130-1134591 - 595

the Thrombin-like Action of Snake Venoms. J. Formosan Med. Assoc., 61: 245-250596	2 <u>-</u> 3 -	601
Chiang, T.S., Ho, K.J. & Lee, C.Y. (1964) Release of Histamine from the Rat Diaphragm Preparation by Formosan Snake Venoms. J. Formosan Med. Assoc., 63: 127-132	9 A. 7	607
Shiau, S.Y. & Ouyang, C. (1965) Isolation of Coagulant and Anti- coagulant Principles from the Venom of <i>Trimeresurus</i> gramineus. Toxicon, 2: 213-220		615
Cheng, H.C. & Ouyang, C. (1967) Isolation of Coagulant and Anticoagulant Principles from the Venom of Agkistrocon acutus. Toxicon, 4: 235-243		624
Ouyang, C. & Shiau, S.Y. (1970) Relationship Between Pharmacological Action and Enzymatic Activities of the Venom of Trimeresurus gramineus. Toxicon, 8: 183-191625	2	633
Ouyang, C., Hong, J.S. & Teng, C.M. (1971) Purification and Properties of the Thrombin-like Principle of Agkistrodon acutus Venom and Comparison with Bovine Thrombin. Thrombos. Diathes. harmorrh. (Stuttg.) 26: 224-234		645
Ouyang, C., Teng, C.M. & Hong, J.S. (1972) Purification and Properties of the Coagulant and Anticoagulant Principles of Agkistrodon acutus Venom. J. Formosan Med. Assoc., 71: 401-407	-	652
Ouyang, C. & Teng, C.M. (1972) Purification and Properties of the Anticoagulant Principle of Agkistrodon acutus Venom. Biochim. Biophys. Acta, 278: 155-162) 1	660
Ouyang, C. & Teng, C.M. (1973) The Effect of the Purified Anti- coagulant Principle of Agkistrodon acutus Venom on Blood Coagulation. Toxicon, 11: 287-292	- -	666
eamates of Clroulation and Respiration News to Cine aculty of Check to Cine aculty of Medicine, Nathonal Tarana December 1:215-222.863 - 571 STRAMPURE S		
Y. Johnson, S.A. and Seegers, k. A. (1555) Calling of		
To, Somei & Ri, Tingen (1941) Toxikologische Wirkungen des Giftes von <i>Vipera russellii formosensis Maki</i> . Jap. J. Med. Sc. IV Pharmacology, 14: 200-201		670
Ri, Tingen (1942) Toxikologische über das Gift von Vipera russellii formosensis Maki. II. Mitteilung. Jap. J. Med. Sc. IV. Pharmacology 15: 38-39		673

Ri,	Tingen (1944) Toxikologische Studien über das Gift von Vipera russellii formosensis Maki. III. Mitteilung: Wirkung auf die Koagulation des Koninchenblutes in Vivo: Jap. J. Med. Sc. IV. Pharmacology, 16: 78
Ri,	Tingen (1944) Toxikologische Studien über das Gift von Vipera russellii formosensis Maki. IV. Mitteilung über die Todesursache des Kaninchens. Folia Pharmacologica Japonica 40: 53-54
Lee	C.Y. (1948) Toxicological Studies on the Venom of <i>Vipera</i> russellii formosensis Maki. V. Actions on the Circulatory System of the Rabbit. J. Formosan Med. Assoc., 47: 14680

Elapid Neurotoxins and Their Mode of Action

C. Y. Lee

Pharmacological Institute

College of Medicine
National Taiwan University
Taipei, Taiwan, China

INTRODUCTION

Venoms of many species of snakes belonging to the family Elapidae (cobras, kraits, corals, mambas, tiger snakes, death adders, black snakes, taipan, etc.) are highly toxic and produce flaccid paralysis and respiratory failure. These effects have been attributed to the so-called "neurotoxins" contained in the venoms. The term "neurotoxin," however, has been ill-defined and used indiscriminately. Russell [1] has stated that neurotoxins can and do have cardiotoxic or hemotoxic activities, or both. Confusion has arisen when the term "neurotoxin" has been applied to a whole venom, for most venoms are complex mixtures of various enzymes and other toxins besides neurotoxins. The purified neurotoxins, however, have been shown to be devoid of any cardiotoxic or hemotoxic activities (cf. [2], also see section "Mode of Action of Elapid Neurotoxins").

Gitter and de Vries [3] have defined neurotoxins as the active components of snake venoms, responsible for the disturbances in the central nervous system and for the impairment of peripheral nerve activity and neuromuscular transmission. This is a rather comprehensive definition, but all the elapid neurotoxins so far studied have been shown to affect selectively the neuromuscular transmission without any appreciable effect on the central nervous system.

Copyright © 1970, Marcel Dekker, Inc.

CHEMISTRY OF ELAPID NEUROTOXINS

The main cause of death due to elapid venoms has been shown to be peripheral respiratory paralysis caused by their neurotoxins (see section "Mode of Action of Elapid Neurotoxins"). All of the elapid neurotoxins so far isolated are basic polypeptides. The content of neurotoxins in elapid venoms varies from one species to another, and there is ample evidence that more than one kind of neurotoxin is present even in the same venom [4-7].

Isolation and Nomenclature

The early attempts to isolate neurotoxins from snake venoms, especially from elapid venoms, have been reviewed by Slotta [8], Christensen [9], and more recently by Meldrum [10] and Boquet [11]. Recent advances in separation methods based on molecular size and charge have been discussed by Porath [5].

Yang [12] has succeeded in isolating a crystalline neurotoxin from the venom of *Naja naja atra* by ammonium sulfate fractionation followed by repeated chromatography on carboxymethyl cellulose column and subsequent crystallization. The crystalline toxin thus obtained was named "cobrotoxin." Its molecular weight was at first reported to be 11,000 but later calculated to be 6949 from amino acid composition [13].

A neurotoxin, called "toxin α ," has been isolated from the venom of Naja nigricollis by ion-exchange chromatography on Amberlite IRC-50 [14], and another neurotoxin, also called "toxin α " was recently isolated from the venom of Naja haje haje by gradient chromatography on Amberlite CG-50, followed by gel filtration on Sephadex G-50 [15].

These three purified neurotoxins from different cobra venoms have been shown to be homogeneous and free from any known enzyme activities. They are not only similar in their chemical structures but also pharmacologically almost indistinguishable from each other and may all be called "cobra neurotoxin."

Among the three toxic fractions isolated from *Hemachatus haemachatus* venom [5], peaks 3 and 5 represent highly toxic neurotoxins, whereas peak 12 appears to be identical with the direct lytic factor (DLF) isolated from the same venom [16], judging from their amino acid compositions.

Two different types of neurotoxins have been separated from the venom of Bungarus multicinctus by means of zone electrophoresis on starch at pH 5.0 [4]. One called "α-bungarotoxin" produces a "nondepolarizing" type of neuromuscular block by acting postsynaptically on the motor

ELAPID NEUROTOXINS AND THEIR MODE OF ACTION

endplate. The two most electropositive fractions, called β - and γ -bungarotoxin, respectively, both produce a neuromuscular block by acting presynaptically on the motor nerve endings (see section "Mode of Action of Elapid Neurotoxins"). Both α - and β -bungarotoxins have recently been further purified by CM-Sephadex chromatography followed by repeated rechromatography on CM-cellulose column and found to be free from any enzyme activities contained in the crude venom [17].

None of these purified neurotoxins has been shown to be glycoprotein as reported by Braganca and Patel [18]. The "low molecular weight" toxins from elapid venoms reported by Fischer and Kabara [19] may be fragments of these larger molecular weight neurotoxins, but so far no evidence has been obtained to support such a possibility.

Amino Acid Composition

In Table 1, the amino acid composition of five neurotoxins isolated so far from different cobra venoms is compared with that of α - and β -bungarotoxins [20] as well as with neurotoxins isolated from sea-snake venoms [21-23]. All of the cobra neurotoxins are composed of 61 to 62 residues of 15 common amino acids but devoid of alanine, methionine, and phenylalanine. They consist of a single peptide chain cross-linked by four disulfide bridges and terminated by leucine and asparagine at their amino-and carboxyl-terminal ends, respectively.

It is interesting to note that the neurotoxins from sea-snake venoms also consist of 61 to 62 amino acids in a single chain cross-linked by four disulfide bonds. The similarity in amino acid composition with cobra neurotoxins is also remarkable; they are all basic polypeptides and devoid of alanine and methionine in their molecules.

From the amino acid analyses and estimation of molecular weight by sedimentation equilibrium, it has been tentatively concluded that α -bungarotoxin consists of 74 amino acids in a single chain cross-linked by five disulfide bridges and terminated by isoleucine at its amino-terminal end, whereas β -bungarotoxin is composed of about 179 residues with ten disulfide bonds [20]. It is noteworthy that some similarities in amino acid composition are to be found between α -bungarotoxin and cobra neurotoxins which have a similar mode of neuromuscular blocking action (see section "Mode of Action of Elapid Neurotoxins"). The molecular weight of β -bungarotoxin has been estimated to be approximately 28,500, but it could be a dimer. Its amino acid composition is quite different from that of other neurotoxins (see Table 1).

NOTTON TO		Lor or									
Taticanda y-bungence bloom by bungence bloom by acting pre-	ata in a)	LINE DESIGNATION									
ic called it and y-bungaro	otox	4	2	2	6	4	S	1 90	2	2 0	
block by acting pre-	latic atic	nome					l, vi				
tion "Made of Action of	린	ngs (s									
grand Arranal and surv	OFFE	graudi									
y ollowed by repeated	0 0									0 2	
ke Venoms Laticauda semijāsciāta	(Erabutoxin										
Ver	pat	18 300									
Lau Semi	Ега	4	U. O	301	5	2	00	00	10 90	Nor as rep	
maiow pridately wo	1011	. [8								ак гери	
Scoring, 18t so far no											
an an tus	xin)	13	41	14	22	12	0	17	00	11	
rom Elapid- and S Bungarus multicinctus	(Bungarotoxin)									Amine	
Elaj	ngar										
s neuron sans isolated	Bu									4 0	
Due -o toosu unw	Darec										
A of IA to be proposed	5)	neurd									
olation is	eak ?	buo uo buu di	7	4	2	6	4	00	4	0	
Table 1 eurotoxins Isolated Fro	Pe	ag alg									
mac their amin	3)	offic rust									
toy Her	rae 1									000	
irrin sea Enak e venonis	Peak (Peak	Herrini									
chain even with column Naja Naja	signi	in a s									
empositico with colurs	'a xin)	в опит					AT.				
apolypeioides and der	oto.	8	7	9	00	00	4	7	7	7 0	
osit	naje									Meath Lue 0 als to	
Acid Comp	aje α)	em ten s a e ds ted by		t has							
Acid C CLOSS-Junko	ie h	9	7	4	~	1	4	7	4	0 2	
The surface of the surface	ha)										
THE COLUMN TWO IS NOT THE PARTY OF THE PARTY	is (x										
ont 179 osidues with a number of supervisor	col	9	7	3	7	00	7	9	S	0	
omuscular blocking act	ign										
	1111111										
be approximately 28	pi		9 1751		ud n			D			
be approximately 28 sufor is quite differen	Amino aci	sine	tidine	zinine	partic acid	reonine	ine	tamic aci	line m	lycine programme	
	4	· Xs	IIS	ILB	dsy	hr	eri	n n	ro	lar lar	

Half-cystine	8	8	8	8	00	10	20	00	8	8
Valine	2	7	1	1	1	S	4	2	2	1
Methionine	0	0	g-Let 0 Sex	0	0	1	A PER	0	0	0
Isoleucine	3	3 6-C	2	3	117	2	8 7 8 7 8 7	4	4	2
Leucine	2	1 . The last	FriaAqual-8	2	2	2	7.	1	1	1
Tyrosine	TAB-AX	14-11-V	2	-	1.3	2	13	1	1	1
Phenylalanir	0	0	0	0	0	1	9 ം	2	2	1
Tryptophan	BAR LA	1018	nt. 1xbyporle	APLAUGICA	1	-		40 J	1	1
Amide NH ₃	7	6	6	10	∞	4		10	10	
Total	61	61	62	61	61	74	~179	62	62	61
N-terminal	Leucine	Leucine	Leucine			Isoleucine	1 S. C. 10 - 9.L.O.	Arginine	Arginine	Arginine
C-terminal	Asparagine	Asparagine Asparagine	Asparagine				ox-clu-Are	Asparagine	Asparagine Asparagine	Asparagine
Molecular weight	6787	6835	6949	6828	6823	7983	~28,500	6837	6857	0889
Reference	[14]	[15]	- p [13] 30 - 8	[5]-192-19	D-GXG-GI	D-STRAGI	[20]	[21-23]	23]	[22]

Fig. 1. Comparison of amino acid sequences of toxin α of N. haje haje (N.h.) [15], toxin α of N. nigricollis (N.n.) [25], cobrotoxin of N. naja atra [24] and erabutoxin b of Laticauda semifasciata [23]. The parts of the N. nigricollis toxin sequence in italics were assigned by similarity to the sequences of other two toxins.

ELAPID NEUROTOXINS AND THEIR MODE OF ACTION

Amino Acid Sequence as savus CD and CD on savus as the distribution of the contract of the con

In Fig. 1, the amino acid sequences of three cobra neurotoxins, cobrotoxin from Naja naja atra [24], toxin \alpha from Naja haje haje [15], and toxin α from Naja nigricollis [25] are compared with that of erabutoxin b from Laticauda semifasciata [23]. It is evident that a remarkable degree of similarity exists especially among the three cobra neurotoxins. The two α toxins are identical from the amino terminus to position 26 and also in their carboxyl terminal sequences from positions 52 to 61. In the region from position 27 to 51, only seven amino acid differences are found between the two neurotoxins. There are also only eight amino acid differences between cobrotoxin and toxin \alpha from Naja nigricollis if serine at position 18 in cobrotoxin is disregarded. It is noteworthy that half-cystinyl residues in these neurotoxins, which form four disulfide bonds for maintaining the polypeptides in their active conformation, are in the same positions. The similarity in amino acid sequence is found not only among cobra neurotoxins but also between erabutoxin b and cobra neurotoxins. Thus, 28 amino acid residues are found to be common to these neurotoxins and seven out of eight half-cystine residues are in the same positions. Similar amino acids tend to be clustered together in their molecules and the location of all of the half-cystine residues near the ends of the molecules leaves the center sequence from 24-25 to 39-40 free. It has been speculated that this central non-cross-linked sequence containing most of the basic amino acids and all of the aromatic amino acids in close order might be the "active site" of the neurotoxin molecules [25]. This uncross-linked loop, possibly projecting outward from the molecule because of its hydrophilic character, is the only region in the molecule where, potentially, a considerable degree of α-helical structure could be present [15], person avail growing language

Structure-Activity Relationship

It has been repeatedly demonstrated that the integrity of the disulfide bonds in the neurotoxin molecules is essential for their biological activity [26-30]. Reduction breaks the disulfide bridges and results in loss of toxicity. The reduced cobrotoxin regains full toxicity on re-oxidation [30]. An optical rotatory dispersion (ORD) study of cobrotoxin discloses that it contains a left-handed α -helical structure [31], and a subsequent study of its circular dichroism (CD) spectrum indicates the presence of β -structure in its molecule [32]. On reductive cleavage of the disulfide bonds, cobrotoxin becomes a mixture of a large amount of random coil and a small amount of α -helix or β -structure. The re-oxidized cobrotoxin, however,