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Preface

This book originated as Special Functions: A Graduate Text. The current
version is considerably enlarged: the number of chapters devoted to orthogonal
polynomials has increased from two to four; Meijer G-functions and Painlevé
transcendents are now treated.

As we noted in the earlier book, the subject of special functions lacks a
precise delineation, but it has a long and distinguished history. The remarks
at the end of each chapter discuss the history, with numerous references and
suggestions for further reading.

This book covers most of the standard topics and some that are less standard.
We have tried to provide context for the discussion by emphasizing unifying
ideas. The text and the problems provide proofs or proof outlines for nearly all
the results and formulas.

We have also tried to keep the prerequisites to a minimum: a reasonable
familiarity with power series and integrals, convergence, and the like. Some
proofs rely on the basics of complex function theory, which are reviewed in the
first appendix. Some familiarity with Hilbert space ideas, in the L? framework,
is useful. The chapters on elliptic functions and on Painlevé transcendents rely
more heavily than the rest of the book on concepts from complex analysis. The
second appendix contains a quick development of basic results from Fourier
analysis, including the Mellin transform.

The first chapter provides a general context for the discussion of the linear
theory, especially in connection with special properties of the hypergeomeltric
and confluent hypergeometric equations. Chapter 2 treats the gamma and
beta functions at some length, with an introduction to the Riemann zeta
function. Chapter 3 covers the relevant material from the theory of ordinary
differential equations, including a characterization of the classical polynomials
as eigenfunctions, and a discussion of separation of variables for equations
involving the Laplacian.

The next four chapters are concerned with orthogonal polynomials on a
real interval. Chapter 4 introduces the general theory, including three-term

Xi



xii Preface

recurrence relations, Padé approximants, continued fractions, and Favard’s
theorem. The classical polynomials (Hermite, Laguerre, Jacobi) are treated
in detail in Chapter 5, including asymptotic distribution of zeros. Chapter 6
introduces finite difference analogues of the classification theorem, yielding
the classical discrete polynomials as well as neoclassical versions and the
Askey scheme. Two methods of obtaining asymptotic results are presented in
Chapter 7. In particular, the Riemann—Hilbert method is carried through for
Hermite polynomials.

Chapters 8 through 11 contain a detailed treatment of the confluent
hypergeometric equation, the hypergeometric equation, and special cases.
These include Weber functions, Whittaker functions, Airy functions, cylinder
functions (Bessel, Hankel, ... ), spherical harmonics, and Legendre functions.
Among the topics are linear relations, various transformations, integral
representations, and asymptotics. Chapter 13 contains proofs of asymptotic
results for these functions and for the classical polynomials.

In Chapter 12 we extend an earlier discussion of the special “recursive”
property of the hypergeometric and confluent hypergeometric equations to
equations of arbitrary order. This property characterizes the generalized
hypergeometric equation. The corresponding solutions, the generalized hyper-
geometric functions, are covered in more detail than in the first version. Elliptic
integrals, elliptic functions of Jacobi and Weierstrass, and theta functions are
treated in Chapter 14.

The principal new topics, Meijer G-functions and Painlevé transcendents,
have current theoretical and practical interest.

Meijer G-functions, which are special solutions of generalized hypergeo-
metric equations, are introduced in Chapter 12. They generalize the classic
Mellin—Barnes integral representations. The G-functions occur in probability
and physics, and play a large role in compiling tables of integrals.

Chapter 15 has an extensive introduction to the classical and modern
theory of Painlevé equations and their solutions, with emphasis on the second
Painlevé equation, PII. Painlevé’s method is introduced and PII is derived
in detail. The isomonodromy method and Bécklund transformations are
introdiiced, and used to obtain rational solutions and information about general
solutions. The Riemann—Hilbert method is used to derive a connection formula
for solutions of PII(0). Applications include differential geometry, random
matrix theory, integrable systems, and statistical physics.

The earlier book contained a concise summary of each chapter. These have
been omitted here, partly to save space, and partly because the summaries often
proved to be more annoying than helpful in use of the book for reference.

The first-named author acknowledges the efforts of some of his research
collaborators, especially Peter Greiner, Bernard Gaveau, Yakar Kannai, David
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Sattinger, and Jacek Szmigielski, who managed over a period of years to
convince him that special functions are not only useful but beautiful.

The authors thank Jacek Szmigielski, Mourad Ismail, Richard Askey, and
an anonymous reviewer for helpful comments on the earlier manuscript. The
first-named author is grateful to the Department of Mathematics and to the
Liu Bie Ju Centre for Mathematical Sciences at City University of Hong Kong
for help and hospitality during the preparation of both versions of this book.
The second-named author is happy to acknowledge all his former students,
collaborators, and assistants who helped with this project. -
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1

Orientation

The concept of a “special function” has no precise definition. From a practical
point of view, a special function is a function of one variable that is (a) not one
of the “elementary functions™ — algebraic functions, trigonometric functions,
the exponential, the logarithm, and functions constructed algebraically from
these functions — and is (b) a function about which one can find information in
many of the books about special functions. A large amount of such information
has been accumulated over a period of three centuries. Like such elementary
functions as the exponential and trigonometric functions, special functions
come up in numerous contexts. These contexts include both pure mathematics
and applications, ranging from number theory and combinatorics to probability
and physical science.

The majority of special functions that are treated in many of the general
books on the subject are solutions of certain second-order linear differential
equations. Indeed, these functions were discovered through the study of phys-
ical problems: vibrations, heat flow, equilibrium, and so on. The associated
equations are partial differential equations of second-order. In some coordinate
systems these equations can be solved by separation of variables, leading to
the second-order ordinary differential equations in question. (Solutions of the
analogous first-order linear differential equations are elementary functions.)

Despite the long list of adjectives and proper names attached to this
class of special functions (hypergeometric, confluent hypergeometric, cylinder,
parabolic cylinder, spherical, Airy, Bessel, Hankel, Hermite, Kelvin, Kummer,
Laguerre, Legendre, Macdonald, Neumann, Weber, Whittaker, ...), each of
them is closely related to one of two families of equations: the confluent
hypergeometric equation(s)

xu'(x)+(c —x)'(x)—aux) = 0 (1.0.1)
and the hypergeometric equation(s)

x(1 =) u"(x)+ [c— (@a+ b+ Dx]u' (x) —abu(x) = 0. (1.0.2)



2 Orientation

The parameters a, b, ¢ are real or complex constants.

Some solutions of these equations are polynomials: up to a linear change
of variables, they are the “classical orthogonal polynomials.” Again there are
many names attached: Chebyshev, Gegenbauer, Hermite, Jacobi, Laguerre,
Legendre, ultraspherical. In this introductory chapter we discuss one context
in which these equations, and (up to normalization) no others, arise. We also
shall see how two equations can, in principle, give rise to such a menagerie of
functions.

Some special functions are not closely connected to linear differential
equations. These exceptions include the gamma function, the beta function,
elliptic functions, and the Painlevé transcendents.

The gamma and beta functions evaluate certain integrals. They are indis-
pensable in many calculations, especially in connection with the class of
functions mentioned earlier, as we illustrate below.

Elliptic functions arise as solutions of a simple nonlinear second-order
differential equation, and also in connection with integrating certain algebraic
functions. They have a wide range of applications, from number theory to
integrable systems.

The Painlevé transcendents are solutions of a class of nonlinear second-order
equations that share a crucial property with the equations that characterize
elliptic functions, in that the solutions are single-valued in certain fixed
domains, independent of the initial conditions.

1.1 Power series solutions
The general homogeneous linear second-order equation is
PO u"(x) + g ' (x) + r(x)u(x) = 0, (1.1.1)

with p not identically zero. We assume here that the coefficient functions p, ¢,
and r are holomorphic (analytic) in a neighborhood of the origin.

If a function u is holomorphic in a neighborhood of the origin, then the
function’ on the left side of (1.1.1) is also holomorphic in a neighborhood of
the origin. The coefficients of the power series expansion of this function can
be computed from the coefficients of the expansions of the functions p, g,
r, and u. Under these assumptions, (1.1.1) is equivalent to the sequence of
equations obtained by setting the coefficients of the expansion of the left side
equal to zero. Specifically, suppose that the coefficient functions p, g, r have
series expansions

p=Y p#, )= un*, rx =) nx,
k=0 k=0

k=0



1.1 Power series solutions 3

and u has the expansion
o<

u(x) = Z Uy Pt
k=0
Then the constant term and the coefficients of x and x* on the left side of (1.1.1)
are

2pouz + qouy + rouo, (1.1.2)
6pous + 2p1us + 2qous + qyuy + riug + roup, -
12pouy + 6p1us + 2pauz + 3qous + 2q1 uz + gauy + rouz + ryuy + raug,

respectively. The sequence of equations equivalent to (1.1.1) is the sequence

Y. G2kt Dpjugz + ) G+ Dagjagen

JHk=nk=>0 Jjt+k=nk=0

* Z g =0, n=0,12,... (1.1.3)
J+k=nk=>0

We say that (1.1.1) is recursive if it has a nonzero solution u that is
holomorphic in a neighborhood of the origin, and the equations (1.1.3)
determine the coefficients {u,} by a simple recursion: the nth equation
determines u, in terms of u,_; alone. Suppose that (1.1.1) is recursive. Then
the first of the equations (1.1.2) should involve u; but not uz, so pp =0, go # 0.
The second equation should not involve u3 or up, so r; = 0. Similarly, the third
equation shows that g = r, = 0. Continuing, we obtain

po=0, pi=0, j=3; ¢ =0, j=2; r=0, j=1.
Collecting terms, we see that the nth equation is
[+ Dnpy + (n+ Dol tn1 + [n(n — D) pa+ngy +rol uy = 0.

For special values of the parameters py,p»,qo.q1,ro, one of these coefficients
may vanish for some value of n. In such a case, either the recursion breaks
down, or the solution « is a polynomial. We assume that this does not happen.

Thus
n(n—1)py +nq) +ro

(n+ Dnp +(n+ Do ™
Assume ug # 0. If p; = 0 but p; # 0, the series Y o~ u,x" diverges for all x # 0
(ratio test). Therefore, up to normalization — a linear change of coordinates and
a multiplicative constant — we may assume that p(x) has one of the two forms
p(x) =x(1 —x) or p(x) = x.

If p(x) = x(1 — x), then (1.1.1) has the form

(1.1.4)

Upyy =

x(1 = x)u”"(x)+ (go + g1x)u' (x) + rou(x) = 0.
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Constants a and b can be chosen so that this becomes (1.0.2).

If p(x) = x and g; # 0 we may replace x by a multiple of x and take g, = —1.
Then (1.1.1) has the form (1.0.1).

Finally, suppose p(x) = x and g; = 0. If also rp = 0, then (1.1.1) is a
first-order equation for u'. Otherwise, we may replace x by a multiple of x
and take ro = 1. Then (1.1.1) has the form

xu”" ()4 cu'(x)+ux) = 0. (1.1.5)

This equation is not obviously related to either (1.0.1) or (1.0.2). However, it
can be shown that it becomes a special case of (1.0.1) after a change of variable
and a “gauge transformation” (see Exercise 5).

In summary: up to certain normalizations, an equation of the form (1.1.1) is
recursive if and only if it has one of the three forms (1.0.1), (1.0.2), or (1.1.5).
Moreover, (1.1.5) can be transformed to a case of (1.0.1).

Let us note briefly the answer to the analogous question for a homogeneous
linear first-order equation

gx)u'(x)+ r(x)u(x) = 0, (1.1.6)

with g not identically zero. This amounts to taking p = 0 in the argument above.
The conclusion is again that g is a pofynomial of degree at most one, with
go # 0, while r = rg is constant. Up to normalization, g(x) has one of the two
forms g(x) = | or g(x) = x — 1. Thus the equation has one of the two forms

w'(x)—aulx) = 0; (x— D (x) —aux) = 0,

with solutions
ulx) = ce™, ulx) = c(x—1),

respectively.

The analogous question for homogeneous linear equations of arbitrary order
is taken up in Chapter 12, Section 12.2.

Let us return to the confluent hypergeometric equation (1.0.1). The power
series solution with ug = 1 is sometimes denoted M(a, ¢; x). It can be calculated
easily*from the recursion (1.1.4). The result is

o0

M@,cx) = Y @n_ o c20,-1,-2,... (1.1.7)

= (©)n!

Here the “shifted factorial” or “Pochhammer symbol” (a), is defined by
(@ =1, (a),=ala+1)a+2)---(a+n—1), (1.1.8)

so that (1), = n!. The series (1.1.7) converges for all complex x (ratio test), so
M is an entire function of x.



