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PREFACE 4

“ Tma book pmndesanmtroduoﬁonﬁothed:ﬁumhﬂgeomohyofmrvu_ .

. and surfaces in three-dimensional Euclidean space. We first consider some -

: hnooonoeptsundfuctsqfanﬂytmgeometrywhmhvmbemfulforhter
- imwestigations. The theory of spaoce curves is presented in the second
. _alinpter. We-then proceed to the foundations ofthﬂtheorxofwfm -

~ " “Problems closely related to the first and second fundamental forins are
oconsidered in the. third and fourth chapter. Chapter V is devoted to
~ goodesics. Several types of mappings of surfaces which are of theoretioal

' of practical importance figure in Chapter VI; inoluding some mappings of -
. the sphereinto the plane which are frequently used when constructing maps
" “of the globe. In this connexion different types of specisl surfaces cocur
 necsesarily. This chapter is therefore related to Chapter VIII on special sur-

- faoes. Thoabsolutedifferentialcaloulus and the displacement of Levi-Civita,

- ‘whmhnofmterestupemalbmoonmxmnmththetheoqofrehtwmy .
. are investigated in Chapter VIL As is natural the results obtained i in
", Chapters III and v yield the foundations of the Chapters V-VIII. ,
o Inthetheoryoflurfaoeswemakaflﬂluseofthemnsorcalculus,
- ‘which is developed as needed, cf. Sections 27-83. The student will quickly -

ﬁndthatth:scaloulusbeoomuammpletoolusoonuhelsaooustomedc' '

.. o the few basio econcepts and rules, especially to the ‘summation con-
. vention’, of. Section 27. He will perceive that the temsor methed is . -
- halpful in achevmg a nmphﬁco.t;on of the snalytic formalism of many

‘-mvestigaAaons Hence tensors are important tools in modun d;ﬂ'auntml

e gnomtry

- . The preaentatmn in thxs book ey also be oonmdered asa prepmtlon

. for the Riemannian geometry of # dimensions.
. " As is well known, tensors are of increasing importance not only in
: ma.thematxcs, but also in the application of mathematios to physics and

B ~engineering.  Sinoe the problems, treaked in differential geometry by
" " means of tensor caloulus are relatively perspicuous, they enable us to
. understand not only the iormahsm but, also the nature and essential baek-

:‘:gmund of this caloulus. The student will thus gain by being able to apply - _
~ ;- his knowledge of tensors to fields other than, that of differential geometry. |

' In using. tensor valculus one should never forget that the purpose of this

-vdoulﬂl lies in its applications to certain problsms it is & tool only, albeit
e very poworful one. |
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We should mention that hany of the topics considered in this book
can also be investigated by means of outer differential forms. Cf.E.Cartan,
Les Systémes différentiels extérieurs et leurs applications géométriques (Paris,
" 1945), W. Blaschke, Einfahrung in die Differentialgeometrie (Berlin, 1950),
“In writing this book, the experiences which I gained during the period
~ of personal co-operation with Professor H. Behnke (University of Miinster in
Westpha.ha), as well as his printed lecture notes on differential geometry,
were of help to me. I have tried to present the whole subject-matter in _
" the simplest possible form consistent with the needs of mathematical rigour,
and to convey a clear idea of the geometric significance of the different
concepts, methods, and results. For this reason also, numerous figires and
examples are included in the text.
~ In order to lessen the reader’s difficulties, especla,lly for those who are
" approaching differential geometry for the first time, the discussion is rela-
tively detailed. The selection of topics included in this book has been
made with great care, consideration being given to the didactic point of
view as well as the theoretical a,nd practical importance of the different
- aspects of the subject. ’
Problems are to be found at the end of almost every section, and the
" solutions are listed at the end of the book. These exercises should help
the reader to become familiar with the material presented in the text
~ and, ‘what is more important, to get acquainted with the manner of
reasoning in differential geometry.

Differential geometry has various relations to other fields of mathe-
- fnatics. Besides the calculus other branches, such as function theory, the
caleulus of variations, and the theory of differential equations, are also
basically important in differential geometry. On the other hand, differ-
ential geometry is an essential part of the foundations of some applied
sciences, for instance physms, geodesy, and geography. Differential .
geometry has therefore what we may call a ‘general character’; I have
tried to stress this point of view in connexion with several topics.

This book is a free translation of my Dj jferentmlgeomeme which a,ppea.red -

in the series Mathematik und ihre Anwendungen in Physik und Technik
- (‘Mathematics and its applications to physics-and technical science’)
(Series A, vol. 25) of the Akademische Verlagsgesellschaft, Geest und
Portig, Leipzig, Germa.ny Some minor changes have been made in the
course of translation.
Professor H. Behnke (Umverslty of Miinster) and Professor H.: Graf _
(Techmca.l University of Da.rmsta,dt) have made valuable suggestmns to
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: 'me’ Professor S. Bergman (Stanford Umverslty) and Professor E. Ullnoh

(Umvermty of Giessen) have checked Sections 64 and 84, respectively. Pro-
fessor C. Loewner (Stanford University), Professor M. Riesz (University

.. of Lund), Professor H. S. M. Coxeter (University of Toronto), Professor

P. Scherk (Umveraxt,y of Sagkatchewan), Professor M. Barner (Teohmcal

University of Karlsruhe), and Professor-O. Blberstem (University of = -

. Ottawa) have read the manuscript carefully, and I have obtained valuable.

suggestions from all of them in the course of numerous personal discussions. '
The translated manuscript has been checked by Professor H. 8. M. Coxeter,

Professor G. F. D. Duff (University of- Toronto), Professor J. T. Duprat

(University of Ottawa), Professor R. C. Fisher (Ohio State Umvel:mty,

¢ © Columbus), and Professor L. Sauvs (St. Patrick’s College, Ottawa). I wish

to' express- my . gratitude to-all of them and also to the University of

Toronto Press, for their efficient co-operation. .
. . ’ E' K'
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PRELIMINARIES
1. Notation. In this soction the meaning of some symbols ocourring
very frequently in our text will be explained and the page on which these

symbols are introduced fot the first time indicated. The reader will find.
another index of definitions, formulae, and theorems ab the end of this
“book. S _ T
Page 4 2y, %, %5 Cartestan coordinates in three-dimensional Eucli-
: dean space R,. 3 ‘
9 Bold-face letters a, y, ete.: Vectors in space Ry; the components
of these vectors will be denoted by @y, @3, 3; %1, Y ¥s» .

eto. _
28 & arclength of a curve. Derivatives with respect to s .
' will be denoted by dots, e.g. ‘
SOX sy = (B, 95 7
x ,—("3'1’-’”1: )"—('a:' da’da'

An arbitrary parameter figuring in the representation |

of a curve will usually be denoted by ¢. Derivatives
* with respect o ¢ will be characterized by primes, e.g.
B i d#x -

’ _.__ — < f 4 =it
- . | X = dt’ . x dt.,. eto.
29 t=%  unit tangent vector of a curve U: X(s).
3¢ p= Ti—l unit principal nomml-veétor of that curve.

86 b=txp unit binormal vector of that curve. _
S B4 k= 1 - curvature, p radius of curvature of a curve.

.88 r  torsionofa ourve. ]
76 ul, u? coordinates on a surface.

__ex - _ _ox
U= B Tar

__ox . *x
o St o
-~ B 8BSy - ' B
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PRELIMINARIES ' [§t

Summation convention. If in a product an index figures
twice, once as a subseript and once as a superseript,
summation must be carried out with respect to that
index from 1 to 2; the summation sign will be omitted, -

, 2
Example: a%b, = . a*b, = a'b;+a%,. For further
a=1 .
details and examples see Section 27.

dx+dX = g,g dudub: first fundamental form.

g = §11922—93: discriminant of the first fundamental form.
Superscript: contravariant index.

Subscript: covariant index.

gk contravariant components of the metric tensor.
L

n unit normal vector to a surface, n, = aa: ; ete.

—dx+dn = b,g duduf: second fundamental form

1
Kk, = = normal curvature of a surface.

R A :
b = by, by —b3,: discriminant of the second tundamental form. -
K1, kg principal curvatures of a surface.
K Gaussian curvature of a surface.
H mean curvature of a surface. B
L.py Christoffel symbols of the first kind.
Tup” Christoffel symbols of the second kind.
B,pye: B*g,: components of the curvature tensors.
Ky geodesic curvature.
dn-dn = c,g du*duf: third fundamental form,

2, Nature and purpose. of differential geometry. In dxﬁ'erent;a.l
- geometry properties of geometric configurations (curves, surfa.ces) are
- investigated by means of differential and integral calculus. All our con-
siderations will take place in three-dimensional Euclidean space and will;
in general, be restricted to real geometric configurations. We will, however,
. occasionally extend our methods to the eomplex domain.
- A geometric property is called local, if it does not pertain to the geometric
configuration as a whole but depends only on the form of the configuration
in an (arbitrary small) neighbourhood of a point under consideration.
For instance, the curvature of a curve is a local property. Since differential
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geometry is concerned ma.mly with local properties, it. is pnma.nly a
geomelry in the small or a local geomeiry. '

This fact does not exclude the possibility of considering geometric con-
figurations as a whole. This kind of investigation belongs to what we call
global differential geometry or differential geometry in ithe large. In. this
book we will consider only a small number of global problems, for example,
in connexion with the theorem of Gauss-Bonnet. We may say that global -
problems are problems in which ‘macroscopic’ properties are related
to ‘microscopic’ ones. For further study in this field -see, for example,-
W. Blaschke, Vorlesungen #ber Differentialgeometrie (3 vols Berlin, 1945
1923, and 1929).

Asis natural, concepts, methods, and results of analytic geometry wﬂ} be
constantly used in differential geometry. The following sections are con-
sequently dsvoted to a brief review of some of the topics from analytic
geometry which we will need for our further investigations. We may
restrict ourselves to the analytic geometry of three-dimensional Euchdea.n
space in which all our considerations will take place. '

3. Concept of mapping. Coordinates in Euclidean' space. The
concept of mapping is of basic importance in differential geometry.

Let M and M’ be two sets of points in three-dimensional Euclidean,
space R;. (M or M’ may contain all points of Ry or only a subset of these -
‘points.) If a rule 7' is stated which associates a point P’ of M’ to every
point P of M we say that a mapping or transformation (more exactly:
point transformation) of the set M into the set M’ is given. P’is called the
‘smage point of P, and P is called an inverse image point of P’. The set of the
image points of all points of M is called the image of M. If every point of
M’ is an image point of at least one point of M the mapping is called a
mapping of M onto M’,

A mapping T of M onto M’ is called one-to-one if the image pomts of any
pair of different points of M are different points of M’. Then there exists
the inverse mapping of T, denoted by 7'-1, which maps M’ onto M such
that every point P’ of M’ is mapped onto that point P of M which. oorre-
sponds to P’ with respect to the mapping 7.

The set of all points whose distance from a point P is smaller than a posi-
tive number 7 is called a neighbourhood of P. Consequently this neighbour-
hood consists of all points in the interior of a sphere of radius 5 with centre-
at P. There are arbitrarily many different neighbourhoods of P each of-
which corresponds to a-certain value of 7. Amapping of a set M into aset M’
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- isseid to be contmuous at a point P of M if, for every nexghbou.rhood U’ of
~ the image P’ of P there exists a neighbourhood U of P whose image is
contained in U’. The mapping is said to be continuous if it is continuous
at every point of M.. A one-to-one continuous ma.ppmg whose inverse
mapping is also continuous is called a topological mapping. Point sets

 which can be topologlcally mapped onto each other are sa.ld to be hmneo

morphic,

- Amappingis called a rigid motion if a.ny pair of image pomts hasg the same
distanoce as the corresponding pair of inverse image points.

‘We will now diseuss some basie facts of the analytic geomeﬁry of the

~ three-dimensional Euclidean spa.ce R, which we will need in our later

mvestxga.tmns

- We first introduce & right- handad system of orthogona.l pa.ra.llel co-

ordinates z,, 2, %; whose unit points on the axes, that is, the points with

coordinates (1, 0, 0), (0, 1, 9), (0, 0, 1), respectively, have the distance 1

from the origin, cf. Fig. 1. Such a special nght-ha.nded system will be

called a Oarteawn coordmate system

Fie. 1. Right-handed system of ortho. ¥F10. 2. Left-handed system of ortho-
gonal pa.ra.llel coordinates *  gonsl parallel ooordiﬂats

In general, a coord.lﬁate syshem is called righé-handed if the axes, in their
natural order, assume the same sort of orientation as the thumb, index
finger, and middle finger of the right hand. A system is said to be Zeft-
handed if the axes, in their natural order, assume the same sort of orienta-
tion as the thumb;. index finger, and middle ﬁnger of the left hand, of.
Fig. 2. ' :
- 'The notation z,, z,, 5 for the coordinates is more convenient than the

familiar z, ¥, 2, for it enables us to use the abbreviated form (z;) for the

coordinates z,, 5, ;3 of a point. ’
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Any other Cartesian coordinate system &y, By, Ty is relawd to the gwen N
one by & speela,l linear tra.nsformatmn of the form : :

(3.18) R =129

whose ooefﬁments aatlsfy the condltxons

o s [0 BED . g o
@y | igla,,,a,,_,s,,,_{l @zp, - Gi=L29,
and ‘ _ : o,
(3.10) Gy Qg Gy
G5 Ay Qg _
The quantity 8, is called the Kronecker symbol. o *

.The transition from one Cartesian coordinate system to another can be’
effected by a certain rigid motion of the axes of the original system. Sucha
motion is composed of & suitable translation and a suitable rotation. A rigid
motion which carries a Cartesian coordinate system into another Cartasign
coordinate gystem is called a direct congruent transformation (or displace-
ment)> We will now investigate (3.1) in somewhat greater detail. .

- Let m and n be natural numbers. A system of m-n quantities arranged

ina rectangular. array of m horizontal rows and 7 vertical columns is

called & mairiz. "The qua.ntmes are called elements of that matrix. If m

- equals n the matrix is said to be square, and the number % is called the

order of the matrix.
. The coeﬁcxents A ﬁgunng in (3 1) form a quadratic ma.tnx

1 G G
= (@g) = (@ Gy ag).

Qg1 Qdge Ogg

 The corresponding determinant (3.1¢) will be denoted by

det A = det(ag).

* If in partioular 4 equa.ls the ‘unit matriz’

100
(s;,,)=(010)'
001

then (3.18) is of the form - s R

32 &= 24D, L (i=12,3)
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This transformation corresponds to a translation of the coordinate system.
If, moreover, b, = 0 (i = 1, 2, 3), we obtain from (?3.2) : '

(33 z, =, C (i=1,2,3),.

i.e. the transformed coordinates are the same as'the original ones. Such a
special transformation is called the identical transformation.

"~ Ifb; = 0 (i = 1, 2, 3), and the coefficients a;;,; are arbitrary but such that
the conditions (3.1 b) and (3.1 ¢) are satisfied, then (3.1 a) corresponds to &
rotation of the coordinate system with the origin as centre. A rotation is

_also called’a direct orthogonal transformation.

We note that a transformation of the form

3 3 .
i’i = Z (L2} 5 .Z Qi Oy — Skl’ det(ai,‘) = -7-1,

can be geometrically mterpreted as 2 motjon composed of a'rotation about
the origin and a reflection in a plane. A transformation of this type is
called an opposite orthogonal iransformation. It transforms a right-handed
coordinate system into a left-handed one and vice versa. An example of a’
. reflection in a plane (in this particular case, in the z,x;-coordinate plane)
is given by the transformation £; = —;, &, = &, &3 == 3. Direct and
opposite orthogonal transformations are called orthogonal transformations,
and the corrésponding matrices are referred to as orthegonal matrices. A
transformation which is composed of translations, rotations, and an-odd
number of reflections is called an opposite congruent transformation. We
should note that every translation or rotation can be composed of two
suitable reflections.
We will now point out-that (3.1) can be interpreted in two different Ways
(Alias.) Formerly we interpreted (3.1) as a coordinate transformation;
(x,) and (&;) are then the coordinates of one and the same point with respect
to twa different Cartesiam coordinate systems. ‘
(Alibi.) The relation (3.1) can also be mterpreted as a mapping or
. point transformation. Then (z;) and (&;) represent the coordinates of two
different points with respect to one and the same Cartesian coordinate
 system’; that is, the coordindte system remains fixed and the location of
the points is changed.

- Both interpretations are olosely related to each other. For, in con-
sequence of the above remarks, the transition from one interpretation to
the other can be effected in the following manner. Instead of imposing a
direct congruent transformation on the given Cartesian coordinate system,
one can just as well move the geometric configuration, that is, change its



