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- Preface

There has been a great deal of excitement in the last ten years over the emer-
gence of new mathematical techniques for the analysis and control of nonlinear
systems: Witness the emergence of a set of simplified tools for the analysis of
bifurcations, chaos, and other complicated dynamical behavior and the develop-
ment of a comprehensive theory of geometric nonlinear control. Coupled with
this set of analytic advances has been the vast increase in computational power
available for-both the simulation and visualization of nonlinear systems as well as
for the implementation in real time of sophisticated, real-time nonlinear control
laws. Thus, technological advances have bolstered the impact of analytic advances
and produced a tremendous variety of new problems and applicaticns that are
nonlinear in an essential way. Nonlinear control laws have been implemented for
sophisticated flight control systems on board helicopters, and vertical take off and
landing aircraft; adaptive, nonlinear control laws have been implemented for robot
manipulators operating either singly, or in cooperation on a multi-fingered robot
hand; adaptive control laws have been implemented for jet engines and automotive
fuel injection systems, as well as for automated highway systems and air traffic
management systems, to mention a few examples. Bifurcation theory has been
used to explain and understand the onset of flutter in the dynamics of aircraft wing
structures, the onset of oscillations in nonlinear circuits, surge and stall in aircraft
engines, voltage collapse in a power transmission network. Chaos theory has been
used to predict the onset of noise in Josephson junction circuits and thresholding
phenomena in phase-locked loops. More recently, analog computation on nonlin-
ear circuits reminiscent of some simple models of neural networks hold out the
possibility of rethinking parallel computation, adaptation, and learning.




viii Preface

It should be clear from the preceding discussion that there is a tremendous
breadth of applications. It is-my feeling, however, that it is possible at the current
time to lay out in a concise, mathematical framework the tools and methods of
analysis that underly this diversity of applications. This, then, is the aim of this
book: I present the most recent results in the analysis, stability, and control of
nonlinear systems. The treatment is of necessity both mathematically rigorous and
abstract, so as to cover several applications simultaneously; but applications are
sketched in some detail in the exercises.

The material that is presented in this book is culled from different versions of a
one-semester course of the same title as the book that I have taught once at MIT
and several times at Berkeley from 1980 to 1997. The prerequisites for the first
year graduate course are:

e An introduction to mathematical analysis at the undergraduate level.
o An introduction to the theory of linear systems at the graduate level.

I will assume these prerequisites for the book as well. The analysis prerequisite is
easily met by Chapters 1-7 of Marsden’s Elementary Classical Analysis, (W. H.
Freeman, 1974) or similar books. The linear systems prerequisite is met by Callier
and Desoer’s Linear Systems Theory, (Springer Verlag, 1991) or Rugh’s Linear
System Theory, (Prentice Hall, 1993); Chen’s Linear System Theory and Design,
(Holt Reinhart and Winston, 1984); or Kailath’s Linear Systems, (Prentice Hall,
1980) or the recent Linear Systems by Antsaklis and Michel, (McGraw Hill, 1998).

Thave never succeeded in covering all of the material in this book inone semester
(45 classroom hours), but here are some packages that I have covered, along with
a description of the style of the course

o Analysis, Stability and some Nonlinear Control
Chapters 1-7 and part of Chapter 9.

o Analysis, Some Stability and Nonlinear Control )
Chapters 1-3, 5-6 followed by Chapters 9, 10 with supplementary material
from Chapter 8.

o Mathematically Sophisticated Nonlinear Control Course
Chapters 1,2, 4, 5-7, with supplementary material from Chapter 3, and Chapters
9-11 with supplementary material from Chapter 8.

Alternatively, it is possible to use all the material in this book for a two-semester
course (90 classroom hours) on nonlinear systems as follows:

o (45 hours Semester 1) Chapters 1-7.
o (45 hours Semester 2) Chapters 8-12.

For schools on the quarter system, 80 classroom hours spread over two quarters
can be used to cover roughly the same material, with selective omission of some
topics from Chapters 3, 6, and 7 in the first quarter and the omission of some topics
from, Chapters 8, 11, and 12 in the second quarter. A shorter 60 classroom hour
long two quarter sequence can also be devised to cover




Preface ix

1. (30hours) Introductory course on Nonlinear Systems. Chapters 1,2, 3 (Sections
3.1—-3.5), Chapter 4 (Sections 4.1—4.6), and Chapter 5.

2. (30 hours) Intermediate course on Nonlinear Control. Chapter 3 (Section 3.9),
Chapter 8, Chapter 9, 10, and parts of Chapter 11.

The structuring of courses at Berkeley favors the two semester structure, with the
first course for second-semester graduate students (taught in the spring semester),
and the second course called “Advanced Topics in Nonlinear Control” for second-
year graduate students (taught in the fall). However, I wish to emphasize that we
frequently see undergraduate students taking this course and enjoying it.

Access to a simulation package for simulating the dynamics of the nonlinear
systems adds a great deal to the course, and at Berkeley I have made available
Matlab, Simnon and Matrix-X at various times to the students as simulation toolkits
to use to help stimulate the imagination and help in the process of “numerical
experimentation.” While I have usually had take home final examinations for the
students, I think that it is useful to have “project-based” final examinations with
numerical examples drawn from a set of particularly topical applications. A word
about the problem sets in this book; they are often not procedural, and frequently
need thought and sometimes further reference to the literature. T have found that
this is a nice way to draw oneself into what is a very exciting, dynamic and rapidly
evolving area of research. I have included these also because over the years, it
has been a pleasant surprise to me to see students solve problem sets based on
the archival literature with ease, when they are given adequate background. I have
chosen applications from a wide variety of domains: mechatronic systems, classical
mechanical systems, power systems, nonlinear circuits, neural networks, adaptive
and learning systems, flight control of aircraft, robotics, and mathematical biology,
to name some of the areas covered. I invite the reader to enjoy and relate to these
applications and feel the same sense of scientific excitement that I have felt for the
last twenty odd years at the marvels and mysteries of nonlinearity.

The author would be grateful for reports of typographic and other errors
electronically through the WWW page for the book:

robotics.eecs.berkeley.edu/~sastry/nl.book

where an up-to-date errata list will be maintained along with possible additional
exercises.

Shankar Sastry
Berkeley, California
March 1999
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Standard Notation

The following notation is standard and is used throughout the text. Other non—
standard notation is defined when introduced in the text and is referenced in the
index. A word about the numbering scheme: Not all equations are numbered, but
those that are frequently referenced are. Theorems, Claims, Propositions, Corol-
laries, Lemmas, Definitions, Examples are numbered consecutively in the order
in which they appear and they are all numbered. Their text is presented in an
emphasized font. If the theorems, claims, propositions, etc. are specifically note-
worthy they are named in bold font before the statement. Exercises are at the end
of each chapter and are all numbered consecutively, and if especially noteworthy
are named like the theorems, claims, propositions, etc. Proofs in the text end with
the symbol O to demarcate the proof from the following text.

Sets

ac A aisanelement of the set A

A C B setAiscontained in set B

AUB  union of set A with set B

ANB Intersection of set A with set B

3 such that .
p=>q pimpliesg

p4&gq qimplies p

p<$q pisequivalenttog

Me interior of a set M




xxiv Standard Notation

M closure of M
la, b[ open subset of the real line
[a, b] closed subset of the real line
[a, b] subset of the real line closed at a, and open at b
a—>b atendstob
alb a decreases towards b
atb a increases towards b
<] direct sum of subspaces
Algebra
N set of non-negative integers, namely, (0,1,2,...)
R field of real numbers :
Z ring of integers, namely, (..., —1,0,1,...)
J square, root of —1
C field of complex numbers
R;(R_) set of non-negative (non-positive) reals
C+(C.) setof complex numbers in the right (left) haif plane,
including the imaginary axis
Jjwaxis  setof purely imaginary complex numbers
Ce {s € C: Re s < 0} = interior of C_
C; {s € C:Re s > 0} = interior of C,.
A set of n-tuples of elements belonging to the set A
(e.g., R", R[s1")
Amxn set of m x n arrays with entries in A.
o(A) set of eigenvalues (spectrum) of a(sguare matrix A
(x:rex  family of elements with K, an index set.
Flx] ring of polynomials in one variable x
with coefficients in a field F
F(x) field of rational functions in one variable x
with coefficients in a field F -
Analysis
f:A~ B f maps the domain A into the codomain B
f(4) rangeof f :={y € B:y = f(x) for some x € A}
A° interior of A
A closure of A
dA f)oundary of A
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C([t, 1], R) vector space of continuous functions [fy, ;] — R
C({to, 11D vector space of continuous functions {, #,] — R
Ck(lty, 1,1, R) vector space of continuous functions [1, ;] — R
. with k continuous derivatives
C*([t, 1,1, R") vector space of continuous functions
[7%0, 1} — R” whose first k derivatives are continuous
|x} norm of an element x in a vector space
(x,y) inner-product of two vectors x, y in a Hilbert space
f .G . ‘ Laplace transform of scalar (or vector) function f or
matrix function G both defined on R.,
f.G time derivative of scalar (or vector) function f or
matrix function G both defined on R,
Df(x) derivative of a function f : R" > R™
a matrix € R"*x"?
D; flxisxa, .00, %p) Derivative of f : R x -.. x R%
‘ with respect to the i-th argument
D? f(x) second derivative of f : R” > R™
with respect to its argument, a bi-linear map from
R*"x R*" > R™

Dfl _____ wWf G xa, ., x,,) k-th partial derivative of
S(xy, ..., xp) with respect to x;,, . ..., x;,
a k-linear map from R x - .. x R" > R™

Lylt, 1} vector space of R valued functions

with p-th power integrable over {1, #,]
L’;,[to, t] vector space of R valued functions
with p-th power integrable over [, #;]
o(x) little “0” of x, that is a function g(x),
such that lim, 0 |g(x)|/1x] = 0
O(x) capital “O” of x, that is a function A(x),

such that limy, 0 }(x)| is well-defined and # 0
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