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ABBREVIATIONS

AD
ADF
ADUF
AE or Ae
AF

A-L sMBR
AN or An
An iMBR
An sMBR
AO or Ao
API
API
ASP
BAF
BAT
BNR
BOD
BPR
CA
CAGR
CAPEX
CAS
CBD
CEB
CFU
CFV
CIP
COD
CSTR
CTMP
DAF
DO
DOC
DS
EPC
EPS
EQ
FBD(A)
Flocs
:M
FOG

FS

GFD
HDPE
HF
HRT
Hz

IAF
IFAS
iFS

IGF
iHF
iMBR
LMH
MBBR
MBR
MC

MF
MGD
MLD
MLE
MLSS

anaerobic digestion

average daily flow

anaerobic digestion-ultrafiltration
aerobic

anaerobic filter

air-lift sidestream MBR
anaerobic

anaerobic immersed MBR
anaerobic sidestream MBR
anoxic

active pharmaceutical ingredient
American Petroleum Institute
activated sludge process
biological aerated filter

best available technology
biological nutrient removal
5-day biochemical oxygen demand
biological phosphorus removal
cellulose acetate

compound annual growth rate
capital expenditure

conventional activated sludge
coarse bubble diffuser
chemically enhanced backflush
colony-forming units

crossflow velocity

clean in place

chemical oxygen demand
continuous stirred tank reactor
chemical thermomechanical process
dissolved air flotation

dissolved oxygen

dissolved organic carbon

dry solids

engineering, procurement and construction

extracellular polymeric substances
equalisation

fine bubble diffuser (aeration)
flocculated particles

food to micro-organism (ratio)
fats, oils and grease

flat sheet

gallons per square foot per day
gigh-density polyethylene
gollow fibre

gydraulic retention time

Hazen

induced air flotation

integrated fixed film activated sludge
immersed flat sheet

induced gas flotation

immersed hollow fibre
immersed membrane bioreactor
litres per m? per hour

moving bed bioreactor
membrane bioreactor
multi-channel

microfiltration

megagallons per day

megalitres per day

modified Ludzack-Ettinger
mixed liquor suspended solids

MLVSS
MT

NF
NPV
0&G
0&M
OEM
OLR
OPEX
OTE
OUR
P

PA
PAN
PCP
PDF
PE
PES
PP
PS
psi
PTFE
PVA
PVDF
PW
RAS
RBC
RHS
RO
SAD
SAF
SBR
SCFM
SDI
SED
sMBR
SMP
SOTE
SRT
TDS
TF
TIPS
TKN
TMP
TMP
TN
TOC
TOTEX
TSS
UASB
UF
USCG
USEPA
uv
VOC
VSD
VSS
WAS
ZLD

mixed liquor volatile suspended solids
multi-tube

nitrogen

nanofiltration

net present value

oil and gas

operation and maintenance
original equipment manufacturer
organic loading rate

operating expenditure

oxygen transfer efficiency

oxygen utilisation rate
phosphorus

polyamide

polyacrylonitrile

personal care products

peak daily flow

polyethylene

polyethylsulphone
polypropylene

polysulphone

pounds force per square inch
polytetrafluoroethylene
polyvinyl alcohol

polyvinylidene difluoride
produced water

return activated sludge

rotating biological contactor
right-hand side (of equation)
reverse 0Smosis

specific aeration demand
submerged aerated filter
sequencing batch reactor
standard cubic feet per minute
silt density index

specific energy demand
sidestream membrane bioreactor
soluble microbial product
standard oxygen transfer efficiency
solids retention time

total dissolved solids

trickling filter

thermal-induced phase separation
total Kjeldahl nitrogen
thermomechanical process
transmembrane pressure

total nitrogen

total organic carbon

total expenditure

total suspended solids

upflow anaerobic sludge blanket
ultrafiltration

US Coast Guard

US Environmental Protection Agency
ultraviolet

volatile organic carbon

variable speed drive

volatile suspended solids

waste activated sludge

zero liquid discharge



SYMBOLS

C’a
Doz
dp/dt
E

Ea
EA,m
E'a
E'A,Iw
E'A,m
EL'UH“'
Ey
Epio

E L.chem

EL,/n

EL..\‘ImI[W

Emi,\'
Eother
Fa

F:M
Fy

/ b
/ net
k

Le

oxygen concentration, mg/L

oxygen demand, mg/L

fouling rate, pressure per unit time

specific energy demand per unit volume
permeate, kWh/ms3

specific energy demand for aeration per unit
volume permeate, kWh/Nm3

specific energy demand for membrane air
scouring per unit volume permeate, kWh/ms3
specific energy demand for aeration per unit
volume air, kWh/Nm3

specific energy demand for biological
aeration per unit volume air, kWh/Nm3
specific energy demand for membrane air
scouring per unit volume air, kWh/Nm?3
specific energy demand for process control
per unit volume permeate, kWh/m?

specific energy demand for liquid/sludge
pumping per unit volume permeate, kWh/m?
specific energy demand for biological
aeration per unit volume permeate, kWh/ms3
specific energy demand for chemical cleaning
per unit volume permeate, kWh/m3

specific energy demand for permeation per
unit volume permeate, kWh/m?

specific energy demand for sludge pumping
per unit volume permeate, kWh/m?3

specific energy demand for mixing per unit
volume permeate, kWh/m3

specific energy demand for other operations,
kWh/m?

specific area footprint, m3/h per m2 area (i.e.
m/h)

food:micro-organism ratio

specific volume footprint, m3/h per m?
volume (i.e. h-1)

discount rate (rate of return on the
investment were the capital sum to be
invested)

flux, L/(m2.h)

backflush flux, L/(m2.h)

net flux, L/(mz.h)

constant in Equation 10

specific cost per m3 treated water

specific cost per m? treated water for
chemicals consumption

Xi

Le
Lt
Lum
Lw

O2,con
PA,m
P/l,uul
Q

Qa

Qr

Qw

R

Scon
SADpio

SADI”
SAD,

SEDAm

specific cost of electrical energy per kWh
specific cost per m3 treated water for labour
specific cost per m2 membrane area
specific cost per m? treated water for waste
disposal

oxygen demand from COD

inlet pressure, bar or kPa

outlet pressure, bar or kPa

liquid flow rate, m3/h

aeration rate, Nm3/h

feed flow rate, m3/h

waste flow rate, m3/h

recirculation ratio: recycle flow per feed flow
COD substrate concentration

specific aeration demand (relating to
biological treatment), Nm3/m?

specific aeration demand (relating to
membrane area), Nm3/(m2.h)

specific aeration demand (relating to
permeate volume), Nm3/m?

specific energy demand for membrane air
scouring, see Eam

time, membrane life, plant life

chemical clean cycle time, hrs or d
physical clean cycle times, mins or hrs
tank volume, m3

MLSS concentration, mg/L

depth of the aerator in the tank, m

sludge yield, kgVSS per kg COD or BOD
observed sludge yield, kgVSS per kg COD or
BOD

OTE correction factor for solids

OTE correction factor for salinity

OTE correction factor for temperature
change in concentration of substrate (COD,
TKN or nitrate), kg/m3

ratio of substrate to MLSS concentration
biomass COD content, generally ~1.1 kg
COD per kg MLSS

biomass TKN content, TKN per g MLSS
dimensionless function of temperature
blower efficiency, %

air density, kg/Nm3

chemical clean duration, mins or hrs
physical clean duration, s or mins



Preface

An increasing number of books exist based on membrane bioreactor (MBR) technology. Apart
from the Butterworth-Heinemann/Elsevier reference texts The MBR Book first and second
editions (respectively 2006 and 2011), there are also at least two books published by WEFpress
(Membrane Systems for Wastewater Treatment, 2006, and Membrane BioReactors WEF Manual
of Practice No. 36, 2011), and a number from IWA Publishing (Membrane Bioreactors: Operation
and Results of an Mbr Wastewater Treatment Plant edited by Bentem, Petri and Schyns, 2007;
Brepol's Operating Large Scale Membrane Bioreactors for Municipal Wastewater Treatment
from 2010, and the recently published Membrane Biological Reactors edited by Hai, Yamamoto
and Lee, 2014). The subject of MBRs is included in books on both wastewater treatment/reuse
and membrane technology (too numerous to mention, but a recent example encompassing both
is Wachinski’s Membrane Processes for Water Reuse, McGraw-Hill, 2012).

It is, however, notable that many of these books are focused predominantly on municipal rather
than industrial effluents. Whilst the MBR technology itself is independent of the application, key
design parameters and pre-treatment requirements can differ appreciably and industrial
effluents per se pose their own challenges. The quality of the effluent varies significantly
between sectors, within sectors, and even temporally, diurnally or seasonally for a specific
installation. As such the application of MBRs to industrial effluents merits special attention.

As with our previous books we have tried to maintain a practical focus throughout. Indeed,
there is no section focused on research and development at all in this book: those seeking such a
perspective are directed to Hai et al’s recent book. Instead, there is a general introduction
(Chapter 1), a summary of MBR technology and the key design parameters and cost equations
(Chapter 2), a review of industrial effluents (Chapter 3), a compilation of commercially available
MBR technologies (Chapter 4) and over fifty case studies (Chapter 5). Processed data from the
case studies are presented in the final section of the book.

The terminology and abbreviations are defined in the Abbreviations (x) and Symbols (xi). Units
used are exclusively SI: a table of conversion factors for US units is given in Annex 2.

During the course of our research for Industrial MBRs, we have been in contact with over 100
contributors from over 60 companies worldwide (page iv). It is therefore almost inevitable that
there will be a certain number of (hopefully small) errors and omissions in the text. While we
have gone to every effort to try to ensure the accuracy and completeness of the content of this
book, please note we cannot be held liable for any errors or omissions. Please notify us at
info@thembrsite.com of any issues so we can correct the situation for future editions.

Finally, we would like to thank the many contributors to this book, listed in the Contributors

section (page iv), as well as our generous sponsors (page iii). Without their support, both this
book and The MBR Site would not be possible.

Simon and Claire Judd
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1 Introduction

1.1 Industrial effluents

Industry accounts for about one quarter of all freshwater demand, and there are few industries
which do not consume large quantities of water in generating specific products (Table 1-1).
Given that only a limited amount of water is consumed by the industrial process, either through
a change in phase (primarily to steam) or inclusion in the industrial product (such as
beverages), it follows that a large amount of wastewater is generated by industrial activity. Such
waters normally vary in quality temporally (seasonally and/or diurnally), as well as according
to the application or duty, to a greater extent than that of municipal effluent (i.e. sewage).
Moreover, in many cases industrial wastewaters tend to be more recalcitrant (i.e. biorefractory)
than municipal ones, i.e. they are less readily treated biologically and the operating conditions
have to be adjusted accordingly.

Table 1-1  Approximate water demand for various items (Waterfootprint, 2014)

Item Volume per unit Water demand
Material Plastic s 02L/g
Steel 100,000 L, car 0.31L/g
Bovine leather 300 L, leather jacket 17 L/g
Food Beer 74 L, glass 03L/g
Paper - 0.3-2.6 L/g
Banana 160 L, large banana 08L/g
Wine 110 L, glass 0.88 L/g
Milk 255 L, glass 1L/g
Eggs 200 L, egg 33L/g
Chicken - 43L/g
Pork = 6.0L/g
Cotton 2,700 L, T-shirt 11L/g
Beef - 15L/¢g
Chocolate 1,700 L, bar 17L/g
Power Uranium - 90 L/g
Natural gas - 110 L/gl
Coal - 160 L/g
Hydropower - 22,000 L/gl
Biomass - 70,000 L/g

As well as the discharged effluent, the quality of the influent water demanded by industry varies
considerably from one duty to another. For some industrial processes the discharged water
quality is not significantly lower than that of the feedwater. Cooling towers, for example,
concentrate the water as a result of the evaporative cooling process, but do not add significantly
to the pollutant content: the main impact is on the temperature. For most industrial sectors,
however, there is a significant pollutant load resulting from their activity, demanding a level of
treatment either for safe discharge to the environment or, increasingly, reuse within the
process. It is opportunities for water recycling which have to some extent driven the uptake of
“high-cost/high-value” process technologies, such as membrane separation, capable of
providing reliably high treated water quality. On the other hand, the significant cost of these
technologies combined with the challenging timeframe for return on investment usually
demanded by most industrial sectors often mitigates against their implementation.

1.2 Industrial effluent treatment processes

The treatment of wastewater relies on a number of individual unit operations which are
combined to make a process, or process treatment scheme. The unit operations themselves are
fundamentally defined by the principles by which they work. Although process treatment
technologies per se may be complicated and diverse in practice, their governing principles are
largely limited to chemical, biochemical and physical processes (Fig. 1-1). Thus, for example, the
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simplest physical process is sedimentation, whereby particles are removed from water by
settlement in large vessels. This process can be intensified by rotating the vessel, in effect
enhancing the gravitational force, such as arises in hydrocyclones and centrifuges. The latter
two technologies are very different in configuration to a sedimentation tank, but are
nonetheless based on the same fundamental principle.

REDOX Biochemical oxidation (S)

Chemical reduction (W) Transformation

Adsorption (W)
PHYSICAL Filtration (W) Separation

Gravitation (S)

Figure 1-1  Process principles, process technology type, and primary action (W: water treatment; S:
sewage treatment)

Chemical and biochemical oxidation processes achieve the same goal but employ different
reagents and process configurations. Thus, the pollutant ammonia can be oxidised to nitrate
either biochemically using micro-organisms (and specifically “nitrifiers”) or chemically using
chlorine - a very widely used chemical reagent in the water industry. The chlorination route is
relatively rapid, in the region of 10-30 minutes, but leads to the formation of potentially harmful
chlorinated by-products. The biochemical process is slow, taking anything between 6 and 48
hours depending on the nature of the feedwater, but is extremely efficient in terms of residual
chemical by-products.

These types of reactions fall under the general term “redox”, an abbreviation of
“reduction/oxidation”, since the oxidation of one species must necessarily be accompanied by
the reduction of another for electroneutrality to be preserved. Thus processes based on
chemical reduction (for example the quenching of excess chlorine using bisulphite) or
biochemical reduction (the reduction of nitrate to nitrogen gas) are also examples of the redox
principle. However, in the fields of microbiology and biochemistry such reactions are given
specific names, for example the biochemical reduction of nitrate to nitrogen is termed
“denitrification” and oxidation of ammonia to nitrate called “nitrification”. There also exist many
important non-redox chemical processes, such as pH adjustment or precipitation of alkaline
earth salts (such as calcium carbonate or sulphate).

An exhaustive listing of all individual technologies based on the generic processes shown in Fig.

1-1 is beyond the scope of this book. There are dozens of different technology types, and these
may act through more than one process principle. For example, chlorination can both oxidise

2
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and disinfect water. A simple slow sand filter combines surface filtration with biochemical
oxidation, through the formation of a thick biofilm (or, as it is commonly referred to,
“Schmutzdecke”) on the filter surface. A membrane bioreactor combines the same two process
principles, but the configuration of the technology differs completely from the slow sand filter.

Most biochemical (more usually termed biological) processes are intended to remove organic
carbon, since this is the primary food source of micro-organisms generally. Such technologies
(Fig. 1-2) can be roughly divided into two categories: “fixed film”, where the biomass
responsible for carrying out the biochemical reactions is affixed to some medium, and
“suspended growth”, where the biomass is distributed as particles (or “flocs”) in a tank. Some
technologies, such as the integrated fixed film activated sludge (IFAS), combine both of these
aspects in their design. In this case plastic media are added to the biotank to encourage the
growth of a fixed film on the media and thus improve the distribution and the retention of the
biomass in the tank.

Biological processes can further be categorised according to the nature of the biology, and
specifically the redox reaction (or electron transfer). The latter normally relates to the food
source of the micro-organism concerned, which may then in turn depend on the prevailing
conditions and, specifically, the presence of a source of oxygen. The conditions are thus
generally defined according to whether there is a supply of dissolved oxygen or DO (“aerobic”
conditions), an absence of DO but a supply of oxyanions like nitrate (“anoxic” conditions) or the
absence of both of these (“anaerobic”). The conditions will then determine the biochemical
conversion (Section 2.3.3).

Biological processes

AEROBIC ANAEROBIC AEROBIC i [ANAEROBIC

Trickling Filter (TF) Anaerobic | Conventional Activated Sludge } Anaerobic
= filter (AF) (cAs) Digestion
Moving Bed Bioreactor ‘ : (AD)
(MBBR) - ‘ Sequencing Batch Reactor ‘
‘ (SBR) ‘ Upflow

Rotating Biological Contactor Anaerobic

(RBC) ‘ Integrated Fixed Film Sludge

Submerged Aerobic Filter | : Activated Sludge (IFAS) Blanket
(SAF) 1 Membrane Bioreactor (MBR) (UASB)

Biological Aerated filter (BAF)

Figure 1-2  Types of biological process technology
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1.3 Membrane bioreactors

1.3.1 The MBR technology

Membrane bioreactors (MBRs) are an example of a suspended growth process (Fig. 1-2);
although other configurations have been studied they have yet to be commercialised. Whilst
most MBR installations operate aerobically, there are examples of anaerobic applications;
anaerobic treatment is generally more viable for wastes which have high levels of organic
carbon, and is widely used for digesting wastewater sludge. Whilst various process adaptations
of the MBR technology have been explored, such as the addition of media to the tank, the basis
of the process - the use of a membrane to retain the biomass within a suspended growth
biological process - has remained unchanged since its original development.

Membrane bioreactor technology is applied equally effectively to both municipal and industrial
wastewater. Municipal MBRs have grown in size over the last decade to the extent that they are
now being designed to treat over 350 MLD (megalitres per day), expressed as peak daily flow
for municipal feeds, and the trend appears to be for increasingly large installations. Industrial
MBRs, by the nature of their purpose, tend to remain relatively small - generally less than 10
MLD - and are designed for specialist applications (Chapters 3 and 5). Therefore, it may be
expected for industrial effluent treatment plants not necessarily to increase in size but become
more diverse in application, extending to increasingly challenging wastewaters. This tendency is
reflected in the number of emerging specialist niche technology suppliers (Chapter 4).

1.3.2 MBR drivers

The drivers for the uptake of MBRs over other advanced wastewater treatment technologies can
be summarised as being primarily (a) a requirement for high-quality treated water and (b)
spatial restrictions. The process provides the highest quality treated water of all the biological
treatment technologies in terms of residual concentrations of suspended inorganic and organic
matter (particulates and colloids) and, in the case of municipal effluents, pathogenic bacteria
and viruses.

MBRs are particularly attractive in instances where the treated water is to be desalinated by a
pressure driven dense membrane process such as reverse osmosis (RO) or nanofiltration (NF).
Since very significant removal of colloidal species is attained by the MBR, the RO/NF membrane
fouling propensity of the product water - usually represented by the silt density index (SDI) - is
very low. Other than the standard protection of the RO/NF membrane by a cartridge filter, no
additional treatment of the MBR permeate is required for downstream membrane-based
desalination. A number of such reuse plants exist worldwide where the recovered and
desalinated water is used for industrial processes, such as steam-raising for electrical power
generation, cooling, acid leaching operations or washing/laundering. The reuse of water for
purposes where direct human contact is minimal reduces or eliminates the requirement for
rigorous disinfection. Data from a recent review (GWI, 2012) suggests that the industrial
effluent reuse/desalination market is growing by between 1.8% for the pulp and paper
industrial sector to around 17% for the petrochemical and power generation sectors (Fig. 1-3).

The reduced size and footprint of MBR plants over that of conventional biological treatment
technologies becomes important when (a) unit land costs are high and/or rapidly increasing,
(b) space availability is limited, and (c) legal constraints have been imposed on the installation’s
visual impact. The latter has led to the housing of MBRs in bespoke buildings (Fig. 1-4) which
can be demonstrably unlike those normally associated with conventional wastewater treatment.
This particular facet of the technology has strongly influenced its implementation at a number
of municipal sites globally, including subterranean installations such as those at Swanage in the
UK and Guangzhou in China.



