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Preface

This volume contains papers presented at the Fifteenth Annual Conference on
Computational Learning Theory (COLT 2002) held on the main campus of the
University of New South Wales in Sydney, Australia from July 8 to 10, 2002.
Naturally, these are papers in the field of computational learning theory, a re-
search field devoted to studying the design and analysis of algorithms for making
predictions about the future based on past experiences, with an emphasis on rig-
orous mathematical analysis.

COLT 2002 was co-located with the Nineteenth International Conference on
Machine Learning (ICML 2002) and with the Twelfth International Conference
on Inductive Logic Programming (ILP 2002).

Note that COLT 2002 was the first conference to take place after the full
merger of the Annual Conference on Computational Learning Theory with the
European Conference on Computational Learning Theory. (In 2001 a joint con-
ference consisting of the 5th European Conference on Computational Learning
Theory and the 14th Annual Conference on Computational Learning Theory
was held; the last independent European Conference on Computational Learn-
ing Theory was held in 1999.)

The technical program of COLT 2002 contained 26 papers selected from
55 submissions. In addition, Christos Papadimitriou (University of California at
Berkeley) was invited to give a keynote lecture and to contribute an abstract of
his lecture to these proceedings.

The Mark Fulk Award is presented annually for the best paper coauthored
by a student. This year’s award was won by Sandra Zilles for the paper “Merging
Uniform Inductive Learners.”

April 2002 Jyrki Kivinen
Robert H. Sloan
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Agnostic Learning Nonconvex Function Classes

Shahar Mendelson and Robert C. Williamson

Research School of Information Sciences and Engineering
Australian National University
Canberra, ACT 0200, Australia
{shahar .mendelson,Bob.Williamson}Qanu.edu.au

Abstract. We consider the sample complexity of agnostic learning with
respect to squared loss. It is known that if the function class F' used for
learning is convex then one can obtain better sample complexity bounds
than usual. It has been claimed that there is a lower bound that showed
there was an essential gap in the rate. In this paper we show that the
lower bound proof has a gap in it. Although we do not provide a definitive
answer to its validity. More positively, we show one can obtain “fast”
sample complexity bounds for nonconvex F for “most” target conditional
expectations. The new bounds depend on the detailed geometry of F,
in particular the distance in a certain sense of the target’s conditional
expectation from the set of nonuniqueness points of the class F'.

1 Introduction

The agnostic learning model [6] is a generalization of the PAC learning model
that does not presume the target function lies within the space of functions
(hypotheses) used for learning. There are now a number of results concerning
the sample complexity of agnostic learning, especially with respect to the squared
loss functional. In particular, in [9] it was shown that if € is the required accuracy,
then the sample complexity (ignoring log factors and the confidence terms) of
agnostic learning from a closed class of functions F' with squared loss is O(d/¢) if
F is convex, where d is an appropriate complexity parameter (e.g. the empirical
metric entropy of the class). This result was extended and improved in [10].

It was claimed in [9] that if F is not convex, there exists a lower bound of
2(1/€2) on the sample complexity. Thus, whether or not F is convex seemed
important for the sample complexity of agnostic learning with squared loss.

However, these are deceptive results. The claimed lower bound relies on a
random construction and the fact that for nonconvex F', one can always find a
target “function” (actually a target conditional expectation) f* which has two
best approximations in the class F'. Unfortunately, as we show here, the random
construction has a gap in the proof.

It is the case though that sample complexity of agnostic learning does de-
pend on the closeness of f* to a point with a nonunique best approximation.
In this paper we will develop some nonuniform results which hold for “most”
target conditional expectations in the agnostic learning scenario from a non-
convex class F' and obtain sharper sample complexity upper bounds. The proof

J. Kivinen and R. H. Sloan (Eds.): COLT 2002, LNAI 2375, pp. 1-13, 2002.
© Springer-Verlag Berlin Heidelberg 2002



2 Shahar Mendelson and Robert C. Williamson

we present here is based on recently developed methods which can be used for
complexity estimates. It was shown in [10] that the complexity of a learning
problem can be governed by two properties. The first is the Rademacher com-
plexity of the class, which is a parameter that indicates “how large” the class is
(see [11,1]). The other property is the ability to control the mean square value
of each loss function using its expectation. We will show that indeed the mean
square value can be bounded in terms of the expectation as long as as one knows
the distance of the target from the set of points which have more than a unique
best approximation in the class.

In the next section we present some basic definitions, notation, and some
general complexity estimates. Then, we present our nonuniform upper bound.
Finally, we briefly present the proof of the lower bound claimed in [9] and show
where there is a gap in the argument.

Thus the present paper does not completely resolve the question of sample
complexity for agnostic learning for squared loss. The lower bound proof of [9]
may be patchable: O(1/£?) may be the best uniform lower bound one can achieve.
What is clear from the present paper is the crucial role the set of nonuniqueness
points of F' plays in the sample complexity of agnostic learning with squared
loss.

2 Definitions, Notation and Background Results

If (X,d) is a metric space, and U C X, then for ¢ > 0, we say that C C X
is an e-cover of U with respect to d if for all v € U, there exists w € C such
that d(v,w) < e. The e-covering number with respect to d, N(g,U,d), is the
cardinality of the smallest e-cover of U with respect to d. If the metric d is
obvious, we will simply say e-cover etc.

The closed ball centered at ¢ of radius r is denoted by B(c,r) := {z € X: ||z—
c|| < r}. Its boundary is 8B(c,r) :={z € X: |z —¢|| =7r}. Ifz € X, and A C X,
let the distance between A and z be defined as d4(z) := inf{d(z,a): a € A}.
The metric projection of  onto A is Ps(z) := {a € A: ||z —a|| = da(z)}. Hence,
elements of P4(z) are all best approzimations of z in A.

Denote by L., (X) the space of bounded functions on X with respect to the
sup norm and set B(Ly (X)) to be its unit ball. Let y be a probability measure
on X and put Lo(u) to be the Hilbert space of functions from X to R with the
norm endowed by the inner product (f,g) = [ f(z)g(z)du(z). Let Y C [-1,1],
and set F' to be a class of functions from X to Y, and thus a subset of Lo(u).
Assumptions we will make throughout are that F is a closed subset of La(x) and
that it satisfies a measurability condition called “admissibility” (see [4,5,15]) for
details.

Definition 1. Let F C La(p). A point f € Lo(u) is said to be a nup point
(nonunique projection) of F with respect to (w.r.t.) Lao(u) if it has two or more
best approzimations in F with respect to the Lo(u) norm. Define

nup(F, p) := {f € La(n) : f is a nup point of F w.r.t. La(p)}.
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It is possible to show that in order to solve the agnostic learning problem of
approximating a random variable Y with values in Y by elements in F, it suffices
to learn the function f* = E(Y|X = z). Indeed, for every f € F,

E(f(X) - Y)* =E(E(Y|X) — f(X))? + E(E(Y|X) - Y)*
= E(f*(X) - f(X))* +E(f*(X) - Y)*.

Thus, a minimizer of the distance between f(X) and Y will depend only on
finding a minimizer for E(f*(X) — f(X ))2, that is, solving the function learning
problem of approximating f* by members of F' with respect to the La(u) norm.

Assume that we have fixed the target f*. We denote by f, its best approx-
imation in F' with respect to the given La(u) norm. (Of course f, is unique
only if f* ¢ nup(F,u).) For any function f € F, let the squared loss function
associated with f* and f be

9.5+ 2z (f(2) = f*(2))? = (fal2) - £*(2))*,

and set L(f*) =L := {gs5-: f € F}.

Interestingly, although a “randomly chosen” f* € Lo(u) is very unlikely! to
be in nup(F, i), as we shall see below, nup(F, u) nevertheless controls the sample
complexity of learning f* for all f* € La(u) \ F.

Definition 2. For any set {z1,...,z,} C X, let u, be the empirical measure
supported on the set; i.e. up, = %22;16,,‘.. Given a class of functions F, a

random variable Y taking values in'Y, and parameters0 < €,6 < 1 let Cr(g,6,Y)
be the smallest integer such that for any probability measure u

Pr{3gs,s+ € L(f*) : Eu,gs,s- <& Eugyse 22} <6, (1)
where f* =E(Y|X = z).

The quantity Cr(g,6,Y) is known as the sample complexity of learning a
target Y with the function class F. The definition means that if one draws a
sample of size greater than Cr (g, §,Y) then with probability greater than 1 — 6,
if one “almost minimizes” the empirical loss (less than €) then the expected loss
will not be greater than 2¢. Typically, the sample complexity of a class is defined
as the “worst” sample complexity when going over all possible selections of Y.

Recent results have yielded good estimates on the probability of the set in
(1). These estimates are based on the Rademacher averages as a way of mea-
suring the complexity of a class of functions. The averages are better suited
to proving sample complexity results than classical techniques using the union
bound over an e-cover, mainly because of the “functional Bennett inequality”
due to Talagrand [14].

! Since Hilbert spaces are uniformly convex it follows from a theorem of Stechkin [13]
(see [17, page 9] or [3, page 29]) that Lo(u) \ nup(F,p) is a countable intersection
of open dense sets. This implies that if one puts a reasonable probability measure v
on La(), then v({f € La(u) : f ¢ nup(F, u)}) = 1.



4 Shahar Mendelson and Robert C. Williamson

Definition 3. Let u be a probability measure on X and suppose F is a class of
uniformly bounded functions. For every integer n, set

R, (F) :=E,E,

1 n
— su e f(X;

where (X;)1, are independent random variables distributed according to u and
(e:)™, are independent Rademacher random variables.

Various relationships between Rademacher averages and classical measures
of complexity are shown in [11,12]. It turns out that the best sample complexity
bounds to date are in terms of local Rademacher averages. Before presenting
these bounds, we require the next definition.

Definition 4. We say that F' C Lo(u) is star-shaped with centre f if for every
g € F, the interval [f,g] ={tf+ (1 —1t)g:0<t <1} C F. Given F and f, let

stax(F, 1) == U [f, 9]

geEF

Theorem 1. Let F C B(Loo(X)), fiz some f* bounded by 1 and set L(f*) to be
the squared loss class associated with F' and f*. Assume that there is a constant
B such that for every g € L(f*), Eg? < BEg.

Let G := star(L,0) and for every € > 0 set Ge = GN {h: Eh% < €}. Then for
every 0 < g, <1,

Pr{3ge L,E,,g<e/2,Eg>¢e} <4
provided that

b

€2 €

2 2
nZCm&x{M %},

where C 1s an absolute constant.

Using this result one can determine an upper bound on the sample complexity in
various cases. The one we present here is a bound in terms of the metric entropy
of the class.

Theorem 2 ([12]). LetY be a random variable on'Y and put f* = E(Y|X = z).
Let F,L,SG and B be as in theorem 1.

1. If there are v,p,d > 1 such that for every € > 0,
supsuplog N(g, F, La(un)) < dlog? (1) :
n  pn €
then for every 0 < e,6 < 1,
il 2
Py pl <
Cle,8,Y) < =2 ma.x{dlog =, Blog 5}’

where Cp, ., depends only on p and 7.
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2. If there are 0 < p < 2 and y > 1 such that for every € > 0,

supsup log N (e, F, L2(un)) < ve™?
n  Hn

then
C(s,6,Y) <C, ma.x{(-—l)l § Blog—}
Y —_ DY ) s b

where Cp -, depends only on p and .

From this result it follows that if the original class F' is “small enough”, one
can establish good generalization bounds, if, of course, the mean-square value
of each member of the loss class can be uniformly controlled by its expectation.
This is trivially the case in the proper learning scenario, since each loss function
is nonnegative. It was known to be true if F' is convex in the squared loss case [9]
and was later extended in the more general case of p-loss classes for 2 < p <
oo [10].

Our aim is to investigate this condition and to see what assumptions must
be imposed on f* to ensure such a uniform control of the mean square value in
terms of the expectation.

3 Nonuniform Agnostic Learnability of Nonconvex
Classes

We will now study agnostic learning using nonconvex hypothesis classes. The
key observation is that whilst in the absence of convexity one can not control
]E[g? s+) in terms of E[gy s+] uniformly in f*, one can control it nonuniformiy
in f* by exploiting the geometry of F'. The main result is corollary 1.

The following result is a generalization of [8, lemma 14] (cf. [7, lemma A.12]).

Lemma 1. Let F be a class of functions from X to Y. Put o € [0,1), set f* €
Lo(p) and suppose f* has range contained in [0,1]. If for every f € F

o~ =132 Sl =21 2)
then for every gs - € L(f*),

16
]E[g?‘,f‘] = EEL‘JLJ"]-

Proof. For the sake of simplicity, we denote each loss function by gs. Observe
that

Elgf] = E[(f*(X) — £(X))* = (£*(X) = fa(X))*)’]
= E[((2f*(X) — £(X) — fa(X))(fa(X) = f(X)))?]
< 16E[(f(X) — fa(X))?]
= 16| fa - fII*. ®3)



6 Shahar Mendelson and Robert C. Williamson

Furthermore,

Elgs] = E[(f*(X) — f(X))? — (f*(X) — fa(X))?]
= E[(f*(X) — fa(X))? + (fa(X) — f(X))?
+2(f*(X) = fa(X))(fa(X) = F(X)) = (F*(X) — fa(X))?]
= E[(fa(X) — £(X))? + 2(f*(X) — fa(X))(fa(X) — £(X))]
= E[(fa(X) — F(X))?] + 2E[(f*(X) — fa(X))(fa(X) = F(X))]
= fo = FI> + 2(f* = far fa — f)
= ||fa_f”2_2<fa—f*7fa—f>
> ||fa— fII?> — el fa — £I1?
=(1-a)lfa - fI?
= 1—1—621E[g?]-
O

Lemma 2. Fiz f* € Lo(u). Then, f € Lo(u) satisfies (2) if and only if f is not
contained in

5 =8 (L0 -+ fu 2 - 4

which is the closed ball in La(p) centered at L(f* — fa)+ fa with radius 1| f* —
fall-

Proof. Note that (f* — fa, f — fa) < %||fa— f||? if and only if || fo— f||2— 2(f*—
fas f — fa) = 0. Clearly, the latter is equivalent to

Ql’—‘

gu* — S 2" = fa) = (U7 - o,
(f* ~ for fa= ) 20

(fa—fifa— 1)+ (f* = fa))

Qll\D

Thus,

o F 42U = fad fom f+ (" = ) 2 (207 = fady 2 = fa) (&)

Clearly, f satisfies (4) if and only if || f — (fo+ 2(f* — fa))ll = 1| f* — fall; hence
it belongs to the region outside of B(®). a

In the limit as o — 0, 0B, approaches a hyperplane. Then by the unique
supporting hyperplane characterization of convex sets [16, theorem 4.1] this im-
plies F' is convex.

We will use lemma 2 as indicated in figure 1. The key factor in bounding B
is the closeness of f* to nup(F,u) in a particular sense. Suppose f* € La(u) \
(F Unup(F, p)), and let

reu(f*) =inf{{|f = Pr(f*)l : £ € {A(f* = Pr(f*)) : A > 0} N nup(F, p)}.
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nup(F, p)

"'F.u(f‘)

Fig. 1. Illustration of lemma 2 and the definition of g, (f*)

Observe that 75, (f*) = || faup — Pr(f*)|| where faup is the point in nup(F, p)
found by extending a ray p from Pg(f*) through f* until reaching nup(F, u)
(see Figure 1). Let

o U= P = Pe()
mulf) = Y T T Tme = e ()]

and observe that ap,(f*) € [0,1] is the largest o such that Bg’) (f*) only
intersects F' at Pp(f*) and as f* “approaches” nup(F, u) along p, ap,,(f*) — 1.
Note that if F' is convex then nup(F, u) is the empty set; hence for all f* €
La(p), rru(f*) = 0o and af,(f*) =0.
Combining theorem 2 with lemmas 1 and 2 leads to our main positive result:

Corollary 1. Let F C Lo(u) be a class of functions into [0,1], set Y to be
a random wvariable taking its values in [0,1], and assume that f* = E(Y|X) ¢
nup(F, u). Assume further that there are constants d,vy,p > 1 such that for every
empirical measure fin, log N (g, F, La(pn)) < dlogP(y/€). Then, there ezists a
constant Cp, ., which depends only on p and v, such that for every 0 <¢,6 <1,

C, 1 log 2
Cr(e,8,Y <ﬂmax{dlop—,—5—-—}.
RERI S © e Tman()

Note that this result is non-uniform in the target Y because some functions f*
are harder to learn than others. For all f* € F* := {f € H: apu(f) > a}, one
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Fig. 2. Illustration of the sets F*. The lines marked o = 3 and a = § are the
boundaries of F/2 and F'/3 respectively

obtains a uniform bound in terms of a. Figure 2 illustrates the boundaries of F'*
for a given F and two different values of a. If F is convex, then ag,(f*) =0
always and one recovers a completely uniform result.

4 The Lower Bound

In this section we present the geometric construction which led to the claimed
lower bound presented in [9]. We then show where there is a gap in the proof
and the bound can not be true for function learning. In our discussion we shall
use several geometric results, the first of which is the following standard lemma,
whose proof we omit.

Lemma 3. Let X be a Hilbert space and set x € X andr > 0. Put B; = B(z,r)
and let y € OBy. For any 0 < t < 1 let zz = tz + (1 — t)y and set By =
B(zt, ||zt — yl|).- Then By C By and 8B; N8By = {z}.

Using lemma 3 it is possible to show that even if « has several best approxima-
tions in G, then any point on the interval connecting z and any one of the best
approximations of z has a unique best approximation.

Corollary 2. Let x € X, set y € Pg(z) and for every 0 < t < 1 let z, =
tz + (1 —t)y. Then, Pg(z) =y.

Proof. We begin by showing that Pg(z;) C Pg(z). To that end, note that
da(z) = |lze —yll = (1 — t) ||z — y||- Indeed, dg(z:) < ||zt —yl|. If there is



