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Foreword

The International Society for the Interaction of Mechanics and Mathema-
tics (ISIMM) was founded in 1977. Its purpose is to promote cooperative
research involving the fields of mechanics and pure mathematics.

Its Executive Committee decided that, from time to time, scholarly
works relevant to the Society’s interests should, by invitation, be pub-
lished under its auspices. The présent volume is one in this series which, it
is hoped, will help to advance the objective of the Society.

The Editorial Board
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Preface

Turbulence, narrowly viewed, is a mode of motion of fluids. There arc at
least two modes of motion: a laminar one whose dynamics mimics the
symmetries of imposed external conditions, and a turbulent one which is
unsteady and chaotic even when the external conditions are perfectly
steady and regular. Osborne Reynolds was the first to write down a
systematic study of laminar and turbulent flow in pipes. He showed that
the transition between laminar and turbulent flows depends on a single
dimensionless number, now called the Reynolds number. For Reynolds
numbers inferior to a critical one the (laminar) flow is as steady and
regular as the imposed data (the pressure drop and boundary conditions),
whereas in the other case the laminar flow loses stability to turbulent
flow, which is unsteady and irregular even though the imposed data are
steady and regular. Since all motions of fluids are governed by equations
of motion. the existence of a connection between dynamics and turbuli-
ence is apparent. However, we cannot solve the equations in the turbul-
ent case and arc unable even to establish some well-known properties of
the observed motions in a matheinatically satisfying way.

Dynamics is a larger and more general subject than turbulence. It
applies to all motions of all material bodies. The mathematical theory of
dynamics seeks properties of solutions of the equations of motion. It has
been formulated and studied in abstract form as a topic in the branch of
mathematics known as dynamical systems. As is frequently the case, the
subject was simplified in some sense by looking at it in a more general
context. In this context it was learned that deterministic problems.
governed only by some few benign nonlinear ordinary differential cqua-
tions or by iterations of maps in finite-dimensional spaces, could give rise
to chaotic turbulent-like behaviour, highly sensitive to initial conditions
and unpredictable after long times or many iterations.

The fact that dynamical systems with a few degrees of freedom can
possess stochasticity due to strong (exponential repulsivity) sensitivity to
initial conditions has beeh known for many vears. E. N. Lorenz. in 1963,
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xiv Preface

was the first to show that a deterministic problem of fluid mechanics could
lead to turbulent-like behaviour with chaotic dynamics. Lorenz con-
sidered the problem of thermal convection governed by Navier-Stokes-
type partial differential (Oberbeck—Boussinesqg) cquations. He supposed
that the solutions of these equations could be expressed by a Galerkin
approximation which he truncated drastically. In this way he came to
three ordinary differential equations with bilinear nonlinearities.

Lorenz studied the solution trajectories numerically and interpreted the
results in a mathematically precise way, using the qualitative theory of
differential equations. He showed numerically that solutions were at-
tracted to a certain special set in the three-dimensional phase space. This
subset is more complicated than a two-dimensional surface and the
trajectories are sensitive to changes in initial conditions: they have a very
_ complicated structure and they give rise to continuous spectra. Sensitivity
to initial conditions means that very slight changes in initial conditions
give rise eventually to entirely different trajectories. The system has the
property of mixing. This means that typical trajectories essentially ‘forget’
their initial conditions so that autocorrelations computed on functionals
of the solutions decay eventually to zero: that is, two events, widely
separated, are uncorrelated so that it is impossible to predict one event
from another if the intervening time is large. Turbulence in fluids has this
property. A continuous frequency spectrum is associated with mixing
flows, because a discrete spectrum implies some kind of (almost) periodi-
city for which the autocorrelation between the same quantity at different
times need not decrease to zero as the time lapse between events
approaches infinity.

Lorenz’s paper attracted attention some years after the appearance in
1972 of a paper by Ruelle and Takens which used the theory of
topological dynamics to introduce the idea that turbulence in fluids would
appear after a few bifurcations. This notion ran against the then popular
theory which had been introduced earlier by Landau (1944) and Hopft
(1948). The ideas of Landau and Hopf had a natural evolution. In the
earlier days of the study of hydrodynamic. problems it was thought that
the conditions for the development of turbulence could be ascertained
from the theory of stability of laminar flows. This study of stability
showed that laminar flows are indeed -unstable but that the flow which
replaces them is also a laminar one, with a different symmetry pattern in
either space or time; for example, a time-periodic motion may replace a
steady motion after the loss of stability. It was easy to imagine that the
loss of the stability of the periodic motion could lead to a flow with two
frequencies, and so on, to n frequencies, as the Reynolds number was
increased. So their theory was that, when transition is progressive, at any
stage there exists in the phase space of solutions corresponding to the n
frequencies an n-dimensional torus which is invariant and attracting.

The ideas of Landau and Hopf do not give a good description of
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transition to turbulence because quasiperiodic solutions are not mixing
and do not exhibit a continuous spectrum, decaying autocorrelation or
high sensitivity to initial conditions. Ruelle and Takens noted that it was
possible for attracting sets having the stochasticity (mixing, etc.) required
for turbulence to arise after a few bifurcations of the Landau type. A
small perturbation of a quasiperiodic flow on a three-dimensional torus
can lead to a strange attractor. In fact, the structure of bifurcations
changes drastically after a few elementary bifurcations of the Landau-
Hopf type. For instance, we have already noted that quasiperiodic flows
can undergo transition to chaotic behaviour. Another possible transition
is by means of a cascade of period-doubling bifurcations of the Feigen-
baum type.

Mathematical studies require good definitions on which theories can be
built. Turbulence in fluids has never had so precise a mathematical
definition, though the general notion of turbulence in dynamical systems
can be made precise. It remains, of course, to show that this general
notion is actually useful in making theories to explain what we observe as
turbulence in fluid flows. Many of the papers in this volume have as their
aim the elucidation of the implications of the generalized concept of
turbulence and the study of its utility in applications to observed turbul-
ence in fluids. To achieve such an aim it is necessary to combine
analytical, computer and experimental studies. The editors have tried
here to represent all such approaches.

It will be clear to readers of this volume that the new results coming
from the theory of nonlinear dynamics fit very well some simple systems
of small dimension—for example, convection in small boxes, flow be-
tween rotating cylinders and rotating spheres. The dynamics of such
problems are governed by partial differential equations of the Navier—
Stokes type but are actually controlled by finite-dimensional ordinary
differential equations of a type that can be obtained by appropriate
Galerkin approximations. So the dynamics is actually set in a finite-
dimensional phase space even though the governing problem is an
infinite-dimensional one. When the configuration of the experiments and
the Reynolds number are appropriately chosen, it appears that the
number of relevant dimensions is small and there is encouraging agree-
ment between the new theories and experiments. The study of the
number of finite dimensions necessary to represent the qualitative fea-
tures of the true dynamics is a new and important cne, which is less well
understood when the number of finite dimensions is large. The classical
cases of turbulence in jets and in pipe and boundary layer flows are
among those which presumably require a large (if finite) number of
dimensions. It remains to be seen if these classical cases, and other
practical problems of turbulence in fluids, can be usefuily treated by these
new ideas from the theory of nonlinear dynamics.

The editors and authors hope that this collection of papers will help
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readers to understand what has been achieved, and to achieve more. We
also believe that this volume reflects the best efforts of our time, by
scientists of various countries, to understand the nonlinear dynamics
governing turbulence.
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1 Strange Attractors and

Quasiattractors
V S Afraimovich and L P Shil’'nikov

1.1 Introduction

The attention of specialists in various fields has frequently been drawn in
recent years to certain special dynamical models with a complicated
behaviour of trajectories. This relates primarily to an attempt to answer
the following fundamental question: can stochastic oscillations arise in
systems of markedly pronounced dynamical character? In this case the
investigation of hydrodynamic models becomes especially important in
order to explain the turbulence phenomenon.

The problem of the onset of turbulence and the description of de-
veloped turbulence are basic problems in hydrodynamics. Whereas the
approach to the second problem is based on ideas and methods of the
probability theory (see Monin and Yaglom [1]), the modern approach tc
the problem of turbulence onset relies upon the idea that a dynamical
system, i.e., the actual Navier-Stokes equations or a finite-dimensional
system which is their Galerkin approximation, can serve as a model for
fluid motion. Hence the methods of quantitative theory of dynamical
systems can be applied to this system. And if this is the case, a question
arises: what is the mathematical prototype of turbulent motion? (Let us
note that in a similar situation the answer to the question about the
mathematical character of self-oscillations was given in the 1930s by A
A. Andronov on the basis of the Poincaré-Lyapunoff theory.}

Attempts to answer this question have been made for decades. For
instance, in the 1940s Landau and Hopf suggested that an asymptotically
stable torus with a quasiperiodic trajectory can be an adequate
mathematical prototype for turbulent motion (at that time limiting sets
consisting of almost periodic motions seemed to be the most ‘compli-
cated’ ones). As for stochastic motions, objects that are the mathematical
prototypes for them are more complicated than periodic motions or the
motions on a torus with a quasiperiodic trajectory. These are the so-
called strange attractors (see, €.g., [2]), in which the stability of the set as
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a whole is..combined with instability of the individual trajectories.
Mathematicians are well familiar with hyperbolic strange attractors such
as submanifolds with Y-structure {3], Smale-Williams’s solenoids [4, 5],
R. V. Plykin's solenoids [6], etc. Since the methods of ergodic theory, as
applied to hyperbolic sets, have been developed in some depth (see
Chapter 5 by Bunimovich), it would seem that an apparatus now exists
for the study of systems with a complicated behaviour of trajectories. It is
this approach which is used by Ruelle and Takens [7], who propose
Smale-Williams’s solenoids as a mathematical prototype for turbulent
flow. - :

One has to admit, however, that the possibility of the appearance of
hyperbolic attractors in simple models still remains problematic. Among
nonstructurally stable strange attractors, those are of primary importance
in which the following characteristic properties of hyperbolic sets are
present: transitivity, an everywhere density of saddle periodic motions,
the existence of a homoclinic curve for each periodic motion (for defini-
tions see below). A strange attractor will be called quasihyperbolic if it
possesses the above-mentioned properties and preserves them under
small perturbations and if, at the same time, it can be nonstructurally
stable. The existence of quasihyperbolic attractors has been proved by
Afraimovich et al. [8]. Numerical analyses performed by Lorenz [9],
Afraimovich et al. [8] and others (see, e.g., [10,11]) show that
quasthyperbolic attractors may exist in simple three-dimensional models,
and above all in Lorenz’s triplet: )

x=—-alx—y), y=-xz+mx-y, z=xy-bz (1.1)

[t should be noted that Afraimovich et al. have formulated analytical
conditions for Poincaré mapping; if these conditions are satisfied, a
quasthyperbolic attractor does exist (see below). An appropriate ‘trans-
versal’, namely the plane z = r— 1, does exist for system (1.1). However,
there is almost no information concerning the analytical properties of the
Poincaré mapping of this plane along the trajectories of system (1.1).
That is why Afraimovich et al. verify the theoretical conditions for
Lorenz’s model numerically.

Let us also present a model for the excitation of oscillations in a laser
[12]):

x=—vyx—y), y = va{xz —y), z=—y(z—2zp)+vi(z¢— D)xy

(1.2)
and a model for a simple ‘dynamo’ [13]):
dw dz dy
o =R—-zy—vw, dt—wymz, a-y(z—y). (1.3)

The specific feature of these models is that their mathematical descrip-
tions are similar in that they can be reduced to Eq. (1.1) by a linear
change of variables. The reason for this ‘similarity’ appears to lie in the
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important fact that there is usually present a stable limiting set that causes
stochastic behaviour of trajectories in three-dimensional systems (a
quasthyperbolic attractor without lacunae—see below for an exact defini-
tion), which we shall call a Lorenz attractor; this therefore requires
detailed investigation. The major part of this chapter (Sections 1.2-1.4) is
devoted to quasihyperbolic attractors. _

In special cases, however, it is frequently difficult to state whether a
system is hyperbolic or quasihyperbolic on an attracting set, though
certain easily verified consequences of hyperbolicity are valid: strong
dependence on the initial conditions; irregular, chaotic behaviour of the
trajectory; etc., Moreover, the following phenomenon has recently been
discovered: in certain cases, where the existence of stable periodic mo-
tions together with a nontrivial hyperbolic subset (in an invariant region),
to which the trajectory appears to be attracted, is proved theoretically,
these motions cannot be ‘picked up’ either by computer or by other
simulation methods. However, the observer is dealing with a stochastic
motion. We propose the term ‘quasiattractor’ to denote such situations.
We shall say, to be more exact, that an attracting set is an -
quasiattractor if (i) it contains a nontrivial hyperbolic subset and (ii) it
possesses no equilibrium state or stable periodic motion whose period
would be less than 1/e. In cases where the value of ¢ is not specified, such
a limiting set will be called a quasiattractor.

Numerical calculations show that in the Lorenz model (Eq. (1.1)) a
quasiattractor exists for values of r from 28 to ~100, though, as was
proved by Afraimovich et al. [14], stable periodic motions may also exist.
The reason for their appearance may be twofold:

(1) destruction of the saddle-focus separatrix loop whose existence, in
turn, follows from the existence of a contour formed by the saddle,
saddle-focus, and trajectories which connect them (15, 16];

(2) stable periodic motions. Stable periodic motions arise as a result of
bifurcations taking place in systems close to systems with a nonstructur--
ally stable homoclinic curve, the saddle value of periodic motion having a
homoclinic curve being less than 1, which is determined by-the fact that
the divergence of the vector field (1.1) is negative (see (17, 18]).

Other cases where quasiattractors arise were considered by Af-
raimovich and Shil’'nikov ([19-21]); they are connected with the action of
small periodic perturbations on a self-oscillaiing system with weak in-
teraction between two self-oscillating systems, and with the disappearance
of nonstructurally stable motion of the saddle-node type. Mathematical
effects that arise in such problems have partially been considered in
[22-24]. In the above-mentioned cases a quasiattractor arises as a result
of the destruction of a stable two-dimensional torus, and from the
mathematical standpoint the problem is reduced to the mapping of a ring
into itself. In Section 1.5 a mechanism is considered for the appearance of
an attractor for the simplest mapping of a plane domain. These mappings,



