

Measurement in Science and Nelson Bolívar, Ph.D Civil Engineering

Measurement in Science and Civil Engineering

In order to develop, research, model, or construct it is require to perform measurements on those systems we are interested. The type of measurement will be given by the nature of the object, or the subject under investigation. In science the measurements often pursue to understand very complicated phenomena, inaccessible sometimes to the currents measurement devices or that may need some innovation in the protocols used. Of course it is in science and engineering where most of the innovations manifest primary and then are exported to other fields, for instance the measure devise in high energy experiments carry a lot of new techniques and protocols to improve the characterization of a variety of systems. In a laboratory the conditions to perform a measurement can be controlled to a certain degree, but facing measurement in outside scenarios involves more complex situations. Typically, any construction needs the proper elaboration of it constituents, saying concrete, steel of any other product of pre-manufacturing origin, that requires in every step of its fabrication a control and monitoring, even beyond the factories, the in-situ measure of certain terrains characteristics, tension on rail roads, porosity in the ground and in the structures, all of these depends of meticulous and appropriate measurements using a variety of techniques, very often originated in pure sciences. Students, civil engineers, and materials scientists will find this book to be a good comprehensive resource for learning about the fundamental methods used in those fields to achieve trustworthy measures, focusing on specific examples that are also top research in the area, suitable for the interested reader.

Nelson Bolivar has a PhD. in physics from the University of Lorraine in France finished in 2014. His expertise is in quantum systems and condensed matter. His interest includes spintronic devices and correspondences between general relativity and condensed matter. He is currently an associate professor at the Central University of Venezuela

ArclerPress

ISBN 978-1-68094-372-6

ArclerPress

Measurement in Science and Civil Engineering

Editor:

Nelson Bolívar, Ph.D

Measurement in Science and Civil Engineering

Editor: Nelson Bolívar, Ph.D

© 2017 Arcler Press LLC 708 3rd Avenue, 6th Floor New York NY 10017 United States of America www.arclerpress.com

ISBN: 978-1-68094-372-6

Library of Congress Control Number: 2016950948

This book contains information obtained from highly regarded resources. Reprinted material sources are indicated. Copyright for individual articles remains with the authors as indicated. A Wide variety of references are listed. Reasonable efforts have been made to publish reliable data and views articulated in the chapters are those of the individual contributors, and not necessarily those of the editors or publishers. Editors or publishers are not responsible for the accuracy of the information in the published chapters or consequences of their use. The publisher believes no responsibility for any damage or grievance to the persons or property arising out of the use of any materials, instructions, methods or thoughts in the book. The editors and the publisher have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission has not been obtained. If any copyright holder has not been acknowledged, please write to us so we may rectify.

Notice: Registered trademark of products or corporate names are used only for explanation and identification without intent of infringement.

Arcler Press LLC publishes wide variety of books and eBooks. For more information about Arcler Press and its products, visit our website at www.arclerpress.com

此为试读,需要完整PDF请访问: www.ertongbook.com

MEASUREMENT IN SCIENCE AND CIVIL ENGINEERING

About the Editor Nelson Bolívar, Ph.D

Nelson Bolivar has a PhD. in physics from the University of Lorraine in France finished in 2014. His expertise is in quantum systems and condensed matter. His interest includes spintronic devices and correspondences between general relativity and condensed matter. He is currently an associate professor at the Central University of Venezuela

List of Contributors

Yulin Zhou

School of Mechanical and Electrical Engineering, Wuyi University, Jiangmen, China

Xin Quan

School of Mechanical and Electrical Engineering, Wuyi University, Jiangmen, China

Tieniu Yang

School of Mechanical and Electrical Engineering, Wuyi University, Jiangmen, China

Shumpei Funatani

Department of Mechanical Systems Engineering, University of Yamanashi, Kofu, Japan

Koji Toriyama

Department of Mechanical Systems Engineering, University of Yamanashi, Kofu, Japan

Tetsuaki Takeda

Department of Mechanical Systems Engineering, University of Yamanashi, Kofu, Japan

David B. Sharp

Department of Engineering and Innovation, Open University, Milton Keynes, UK

Alistair Shawcross

School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK

Clive A. Greated

School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK

Zhenzhen Wang

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, China

Graduate School of Advanced Technology and Science, The University of Tokushima, Tokushima, Japan

Yoshihiro Deguchi

Graduate School of Advanced Technology and Science, The University of Tokushima, Tokushima, Japan

Hiroaki Watanabe

Energy Engineering Research Laboratory, The Central Research Institute of Electric Power Industry, Kanagawa, Japan

Rvoichi Kurose

Department of Mechanical Engineering and Science, Advanced Research Institute of Fluid Science and Engineering, Kyoto University, Kyoto, Japan

Junjie Yan

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, China

Jiping Liu

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, China

Ken McGill

Department of Chemistry, Physics, and Astronomy, Georgia College and State University, Milledgeville, GA, USA

Kathryn Ham

Department of Chemistry, Physics, and Astronomy, Georgia College and State University, Milledgeville, GA, USA

Kris Schock

Department of Chemistry, Physics, and Astronomy, Georgia College and State University, Milledgeville, GA, USA

Endang Suprastiwi

Department of Conservative Dentistry, Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia

Ratna Meidyawati

Department of Conservative Dentistry, Faculty of Dentistry, University of Indonesia, Jakarta, Indonesia

Md. Tawhidul Islam Khan

Department of Advanced Technology Fusion, Saga University, Saga, Japan

Maeda Kazuhiko

Faculty of Science and Engineering, Saga University, Saga, Japan

Kenbu Teramoto

Department of Advanced Technology Fusion, Saga University, Saga, Japan

Md. Mahbub Hasan

Graduate School of Science and Engineering, Saga University, Saga, Japan

Fei Duan

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

Ting Foong Wong

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

Alexandru Crivoi

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

Joe-Ming Chang

Institute of NanoEngineering and MicroSystems, Hsinchu 30013, Taiwan.

Wei-Yu Chang

Engineering and System Science Department, National Tsing Hua University, Hsinchu 30013, Taiwan

此为试读,需要完整PDF请访问: www.ertongbook.com

Fu-Rong Chen

Engineering and System Science Department, National Tsing Hua University, Hsinchu 30013, Taiwan

Fan-Gang Tseng

Institute of NanoEngineering and MicroSystems, Hsinchu 30013, Taiwan.

Engineering and System Science Department, National Tsing Hua University, Hsinchu 30013, Taiwan

Applied Science Research Center, Academia Sinica, Taipei 11529, Taiwan

Clement Kleinstreuer

Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, NC 27695-7910, USA

Yu Feng

Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, NC 27695-7910, USA

Jaroslav Holis

Department of Electromagnetic Field, Czech Technical University in Prague, Technicka 2 Street, 166 27 Praha 6, Czech Republic

Pavel Pechac

Department of Electromagnetic Field, Czech Technical University in Prague, Technicka 2 Street, 166 27 Praha 6, Czech Republic

K. De Wilder

Department of Civil Engineering, Building Materials and Building Technology Section, KU Leuven, 3001 Heverlee, Belgium

G. De Roeck

Department of Civil Engineering, Strucutral Mechanics Section, KU Leuven, Kasteelpark Arenberg 40, Box 2448, 3001 Heverlee, Belgium.

L. Vandewalle

Department of Civil Engineering, Building Materials and Building Technology Section, KU Leuven, 3001 Heverlee, Belgium

Florian Moser

Institute of Engineering Geodesy and Measurement Systems, Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria

Werner Lienhart

Institute of Engineering Geodesy and Measurement Systems, Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria

Helmut Woschitz

Institute of Engineering Geodesy and Measurement Systems, Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria

Hartmut Schuller

INSITU Geotechnik ZT GmbH, Gartengasse 19, 8010 Graz, Austria

Ping Wang

Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China

School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

Li Wang

Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China

School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

Rong Chen

Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China

School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

Jinhui Xu

Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China

School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

Jinmang Xu

Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China

School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

Mingyuan Gao

Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China

School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

S. Papini

Department of Energy Engineering "S. Stecco", University of Florence, Florence, Italy

L. Pugi

Department of Energy Engineering "S. Stecco", University of Florence, Florence, Italy

A. Rindi

Department of Energy Engineering "S. Stecco", University of Florence, Florence, Italy

E. Meli

Department of Energy Engineering "S. Stecco", University of Florence, Florence, Italy

I. W. Nam

Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea

H. K. Lee

Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea

Laura Chiacchiari

Dipartimento di Ingegneria Civile e AmbientaleSapienza, Università di Roma

Giuseppe Loprencipe

Dipartimento di Ingegneria Civile e AmbientaleSapienza, Università di Roma

Gun Kim

School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, USA

Jin-Yeon Kim

School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, USA

Kimberly E. Kurtis

School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, USA

Laurence J. Jacobs

School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, USA

G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, USA

Yann Le Pape

Oak Ridge National Laboratory, Oak Ridge, TN 37831-6148, USA

Maria Guimaraes

Electric Power Research Institute (EPRI), Charlotte, NC 28262-8550, USA

Preface

In order to develop, research, model, or construct it is require to perform measurements on those systems we are interested. The type of measurement will be given by the nature of the object, or the subject under investigation.

In science the measurements often pursue to understand very complicated phenomena, inaccessible sometimes to the currents measurement devices or that may need some innovation in the protocols used. Of course it is in science and engineering where most of the innovations manifest primary and then are exported to other fields, for instance the measure devise in high energy experiments carry a lot of new techniques and protocols to improve the characterization of a variety of systems. In a laboratory the conditions to perform a measurement can be controlled to a certain degree, but facing measurement in outside scenarios involves more complex situations. Typically, any construction needs the proper elaboration of it constituents, saying concrete, steel of any other product of pre-manufacturing origin, that requires in every step of its fabrication a control and monitoring, even beyond the factories, the in-situ measure of certain terrains characteristics, tension on rail roads, porosity in the ground and in the structures, all of these depends of meticulous and appropriate measurements using a variety of techniques, very often originated in pure sciences. Students, civil engineers, and materials scientists will find this book to be a good comprehensive resource for learning about the fundamental methods used in those fields to achieve trustworthy measures, focusing on specific examples that are also top research in the area, suitable for the interested reader.

Editor

Nelson Bolívar, Ph.D