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Preface to the third edition

This book is intended for a graduate level course. The material is first pre-
sented in a general algorithmic manner followed by power system applications.
Users do not necessarily have to have a power systems background to find this
book useful, but many of the comprehensive exercises do require a working
knowledge of power system problems and notation.

This new edition has been updated to include new material. Specifically,
this new edition has added the following material:

e Updated examples on sparse LU factorization
e Preconditioners for linear iterative methods

e Broyden’s method

e Jacobian free Newton—-Krylov methods

e Double-shift method for computing complex eigenvalues

Eigensystem Realization Algorithm

and additional problems and examples.

A course structure would typically include the following chapters in se-
quence: Chapters 1, 2, and 3. Chapter 2 provides a basic background in
linear system solution (both direct and iterative) followed by a discussion of
nonlinear system solution in Chapter 3. Chapter 2 can be directly followed by
Chapter 4, which covers sparse storage and computation and follows directly
from LU factorization. Chapters 5, 6, and 7 can be covered in any order after
Chapter 3 depending on the interest of the reader.

Many of the methods presented in this book have commercial software
packages that will accomplish their solution far more rigorously with many
failsafe attributes included (such as accounting for ill conditioning, etc.). It is
not my intent to make students experts in each topic, but rather to develop an
appreciation for the methods behind the packages. Many commercial packages
provide default settings or choices of parameters for the user; through better
understanding of the methods driving the solution, informed users can make
better choices and have a better understanding of the situations in which the
methods may fail. If this book provides any reader with more confidence in
using commercial packages, I have succeeded in my intent.

Mariesa L. Crow
Rolla, Missouri

xi



xii Computational Methods for Electric Power Systems

Lecture notes are available from the CRC Web site:
http://www.crepress.com/product /isbn /9781498711593

MATLAB is a registered trademark of The MathWorks, Inc. For product
information, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098 USA

Tel: 508 647 7000

Fax: 508 647 7001

E-mail: info@mathworks.com

Web: www.mathworks.com



Contents

Preface to the third edition

1 Introduction

2 The Solution of Linear Systems

2.1
2:2

2.3
24
2.5
2.6
2.7

2.8

3.1
3.2

3.3

3.4
3.5

Gaussian Elimination . . . .. ... .. ... ... . ... ...
LU Factorizafion. . : « s « as wmmme v 666 5 6 362 0 a
2.2.1 LU Factorization with Partial Pivoting . . . . . . . ..
2.2.2 LU Factorization with Complete Pivoting . . . . . . .
Condition Numbers and Error Propagation . ... ... ...
Stationary Iterative Methods . . . . ... ... ... .....
Conjugate Gradient Methods . . . .. ... .. ... .....
Generalized Minimal Residual Algorithm . . . ... ... ...
Preconditioners for Iterative Methods . . . . ... ... ...
ZTl JBEODL woww s e s rsis e msEmB T ey s A a
2.7.2  Symmetric Successive Overrelaxation . . . . . .. ...
2.7.3 Symmetric Gauss—Seidel . . . . .. ... ... ...
2.7.4 Incomplete LU Factorization . ... ... .. .. ...
275 GraphBased ... ............ ... ... ..
Problems: . . oo o c i ¢ 6 v 5 68 o 0 b s mmm s o s 0o s ao

Systems of Nonlinear Equations

Fixed-Point Iteration . . . . ... ... ... ... .......
Newton-Raphson Iteration . ... ... ............
3.2.1  Convergence Properties . . ... ............
3.2.2 The Newton-Raphson for Systems of Nonlinear Equa-
BIONS & v s @ w o o & & § 8 8 3 5 %3 @GS4 85 1 8 4 &
Quasi-Newton Methods . . . . .. ... ... .........
3.3.1 Secant Method . . ... ... ... ... ........
3.3.2 Broyden’s Method . . ... ... ............
3.3.3  Modifications to the Newton—Raphson Method
3.3.4  Numerical Differentiation . . . .. ... ... .....
3.3.5 Newton-GMRES . . .. ... ... ... ........
Continuation Methods . . . . . .. . ... ... ... ... ..
Power System Applications . . . . ... ... ... ... ...
B35l PowerFlow < uwiws s + ¢ v 5 53 3 s s awsdss s a

xi

65
68
69
72
74
5
79
83
86
87

vii



viii Contents

3.5.2 Regulating Transformers . . . . . ... ... ... ... 95

3.5.3 Decoupled Power Flow . . . . ... ... ........ 99

3.5.4 Fast Decoupled Power Flow . . . . ... ... ..... 101

3.5.5 PV Curves and Continuation Power Flow . . . . . .. 105

3.5.6  Three-Phase Power Flow . . . . . ... ... ...... 112

36 Problems . :ismamcanssnoisgenmsE® wes i b 113
4 Sparse Matrix Solution Techniques 117
4.1 Storage Methods . « s 526 ¢ 56 v e manmman oo 118
4.2  Sparse Matrix Representation . . . ... ... ... .. .... 127
4.3 Ordering Schemes . . . . . .. ... ... ... ... .. ... 127
431 Schemel . . ... v .iiissvasumassssss 141

43.2 Schemel. ... ... .. .. .. ... ... ... 142

433 Schemell ccsssven :: nanswpsmas oo 55 m 148

4.3.4 OtherSchemes .. ... ................. 151

4.4  Power System Applications . . . ... ... ... L. 152
45 Problems i usuvmammns s i s O aBEE vy 8 8« s § G 156
5 Numerical Integration 163
5.1 One-Step Methods . . .. ... . ... ..., 164
5.1.1  Taylor Series-Based Methods . . . ... ... ... .. 164

5.1.2 Forward Euler Method . . . . . ... .. ........ 165

5.1.3 Runge-Kutta Methods . . . . . . ... ... ... ... 165

5.2 Multistep Methods . . . . .. .. .. ... 166
5.2.1 Adams Methods . .. ... ............... 172

5.2.2 Gear'sMethods . . . ... ... ... oL 175

5.3  Accuracy and Error Analysis . . . . ... ... L. 176
5.4  Numerical Stability Analysis . . . . . . ... ... .. ..... 180
55 Stiff Systems . .. .. ... 187
5.6  Step Size Selection . . .. ... ... ... ... .. ..., 191
5.7 Differential-Algebraic Equations . . . . . .. .. ... ..... 198
5.8  Power System Applications . . ... ... ... ... ... 200
5.8.1  Transient Stability Analysis . . . . ... ... ... .. 200

5.8.2  Midterm Stability Analysis . . ... .. ... ..... 208

5.9 Problems .« osw w5 s 555 8 8 e mma s 5 s KK e d 211
6 Optimization 219
6.1 Least Squares State Estimation . . . . ... ... ....... 220
6.1.1  Weighted Least Squares Estimation. . . . . . ... .. 223

6.1.2 Bad Data Detection . . .. ... ............ 226

6.1.3 Nonlinear Least Squares State Estimation . . . . . . . 229

6.2 Linear Programming . . .. ... ... ... ... ....... 230
6.2.1 Simplex Method . . . .. ... .. ... .. ... ... 231

6.2.2 Interior Point Method . . . . .. .. ... ....... 235

6.3 Nonlinear Programming . . . ... ... ... ......... 240



Contents

6.4

6.5

6.3.1 Quadratic Programming . . . . ... ... .......
6.3.2  Steepest Descent Algorithm . . . . ... ... .....
6.3.3  Sequential Quadratic Programming Algorithm
Power System Applications . . .. .. ... ..........
6.4.1 Optimal Power Flow . . . ... ... ..........
6.4.2 State Estimation . . .. .. ... ............
Problems . . .. ... ... ..

7 Eigenvalue Problems

7.1 The Power Method . . ... ... ... .. ...........
7.2 The QR Algorithm . . .. ... ... . ... ..........
721 Deflation v s ¢ s ¢ s s 8 28 s amwmms i85 5
7.2.2 Shifted QR . . ...
7.2.3 Double Shifted QR . . . . . ... .. ... ...
7.3 Arnoldi Methods . . ... ... . ... ... ... ......
7.4  Singular Value Decomposition . . . .. ... ..........
7.5 Modal Identification . ... ... ... . ... .........
7.5.1 PronyMethod ......................
7.5.2  The Matrix Pencil Method . . ... ... ... ....
7.5.3  The Levenberg-Marquardt Method . . . . . ... ...
7.5.4  Eigensystem Realization Algorithm . . . ... ... ..
7.5.5 Examples . .. ... .. ... .. ... ...,
7.6 Power System Applications . ... ...............
7.6.1 Participation Factors . . . . .. ... ..........
T7 Problems . .. i i v e e e e e e
References

Index

ix

241
243

. 248

251
251
262
266

273
274
276
283
283
284
286
293
296
298
301
302
305
306
311
311
312

315

321






1

Introduction

In today’s deregulated environment, the nation’s electric power network is be-
ing forced to operate in a manner for which it was not intentionally designed.
Therefore, system analysis is very important to predict and continually up-
date the operating status of the network. This includes estimating the current
power flows and bus voltages (power flow analysis and state estimation), deter-
mining the stability limits of the system (continuation power flow, numerical
integration for transient stability, and eigenvalue analysis), and minimizing
costs (optimal power flow). This book provides an introductory study of the
various computational methods that form the basis of many analytical studies
in power systems and other engineering and science fields. This book provides
the analytical background of the algorithms used in numerous commercial
packages. By understanding the theory behind many of the algorithms, the
reader/user can better use the software and make more informed decisions
(i.e., choice of integration method and step size in simulation packages).

Due to the sheer size of the power grid, hand-based calculations are nearly
impossible, and computers offer the only truly viable means for system anal-
ysis. The power industry is one of the largest users of computer technology
and one of the first industries to embrace the potential of computer analysis
when mainframes first became available. Although the first algorithms for
power system analysis were developed in the 1940s, it wasn’t until the 1960s
that computer usage became widespread within the power industry. Many of
the analytical techniques and algorithms used today for the simulation and
analysis of large systems were originally developed for power system applica-
tions.

As power systems increasingly operate under stressed conditions, computer
simulation will play a large role in control and security assessment. Commer-
cial packages routinely fail or give erroneous results when used to simulate
stressed systems. Understanding of the underlying numerical algorithms is
imperative to correctly interpret the results of commercial packages. For
example, will the system really exhibit the simulated behavior or is the sim-
ulation simply an artifact of a numerical inaccuracy? The educated user can
make better judgments about how to compensate for numerical shortcom-
ings in such packages, either by better choice of simulation parameters or by
posing the problem in a more numerically tractable manner. This book will
provide the background for a number of widely used numerical algorithms that
underlie many commercial packages for power system analysis and design.
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This book is intended to be used as a text in conjunction with a semester-
long graduate level course in computational algorithms. While the majority
of examples in this text are based on power system applications, the theory is
presented in a general manner so as to be applicable to a wide range of engi-
neering systems. Although some knowledge of power system engineering may
be required to fully appreciate the subtleties of some of the illustrations, such
knowledge is not a prerequisite for understanding the algorithms themselves.
The text and examples are used to provide an introduction to a wide range
of numerical methods without being an exhaustive reference. Many of the
algorithms presented in this book have been the subject of numerous modifi-
cations and are still the object of on-going research. As this text is intended to
provide a foundation, many of these new advances are not explicitly covered,
but are rather given as references for the interested reader. The examples in
this text are intended to be simple and thorough enough to be reproduced
easily. Most “real world” problems are much larger in size and scope, but the
methodologies presented in this text should sufficiently prepare the reader to
cope with any difficulties he/she may encounter.

Most of the examples in this text were produced using code written in
MATLAB®. Although this was the platform used by the author, in practice,
any computer language may be used for implementation. There is no practical
reason for a preference for any particular platform or language.



2

The Solution of Linear Systems

In many branches of engineering and science it is desirable to be able to math-
ematically determine the state of a system based on a set of physical relation-
ships. These physical relationships may be determined from characteristics
such as circuit topology, mass, weight, or force, to name a few. For example,
the injected currents, network topology, and branch impedances govern the
voltages at each node of a circuit. In many cases, the relationship between
the known, or input, quantities and the unknown, or output, states is a linear
relationship. Therefore, a linear system may be generically modeled as

Ar =10 (2.1)

where b is the n X 1 vector of known quantities, z is the n x 1 unknown state
vector, and A is the n x n matrix that relates x to b. For the time being, it will
be assumed that the matrix A is invertible, or non-singular; thus each vector
b will yield a unique corresponding vector . Thus the matrix A~! exists and

zr=A"1 (2.2)

is the unique solution to Equation (2.1).

The natural approach to solving Equation (2.1) is to directly calculate the
inverse of A and multiply it by the vector b. One method to calculate A1 is
to use Cramer’s rule:

1

A‘l(i,j) — m (Aij)T fori=1,...,n,5=1,...,n (2.3)

where A~1(i,j) is the ijth entry of A=! and A;; is the cofactor of each entry
a;; of A. This method requires the calculation of (n + 1) determinants, which
results in 2(n + 1)! multiplications to find A~!! For large values of n, the
calculation requirement grows too rapidly for computational tractability; thus
alternative approaches have been developed.

Basically, there are two approaches to solving Equation (2.1):

e Direct methods, or elimination methods, find the exact solution (within
the accuracy of the computer) through a finite number of arithmetic
operations. The solution z of a direct method would be completely
accurate were it not for computer roundoff errors.
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e [terative methods, on the other hand, generate a sequence of (hopefully)
progressively improving approximations to the solution based on the
application of the same computational procedure at each step. The
iteration is terminated when an approximate solution is obtained having
some prespecified accuracy or when it is determined that the iterates are
not improving.

The choice of solution methodology usually relies on the structure of the
system under consideration. Certain systems lend themselves more amenably
to one type of solution method versus the other. In general, direct methods
are best for full matrices, whereas iterative methods are better for matrices
that are large and sparse. But, as with most generalizations, there are notable
exceptions to this rule of thumb.

2.1 Gaussian Elimination

An alternate method for solving Equation (2.1) is to solve for  without cal-
culating A~! explicitly. This approach is a direct method of linear system
solution, since x is found directly. One common direct method is the method
of Gaussian elimination. The basic idea behind Gaussian elimination is to use
the first equation to eliminate the first unknown from the remaining equations.
This process is repeated sequentially for the second unknown, the third un-
known, etc., until the elimination process is completed. The nth unknown
is then calculated directly from the input vector b. The unknowns are then
recursively substituted back into the equations until all unknowns have been
calculated.

Gaussian elimination is the process by which the augmented n x (n + 1)
matrix

[A | 8]
is converted to the n x (n + 1) matrix
[ ]6%]

through a series of elementary row operations, where

Ar=b

A Az = A"
Iz = A" 'b=b*
gt =b*

Thus, if a series of elementary row operations exist that can transform the
matrix A into the identity matrix I, then the application of the same set of



