AN INTRODUCTION TO
- FORMAL
PROGRAM VERIFICATION

Ali Mili

AN INTRODUCTION TO
FORMAL
PROGRAM VERIFICATION
Ali Mili

Laval University

ﬁ VAN NOSTRAND REINHOLD COMPANY
New York

Copyright © 1985 by Van Nostrand Reinhold Company Inc.

Library of Congress Catalog Card Number: 84-3528
ISBN: 0-442-26322-8

All rights reserved. No part of this work covered by the copyright hereon may
be reproduced or used in any form or by any means—graphic, electronic; or
mechanical, including photocopying, recording, taping, or information storage
and retrieval systems—without permission of the publisher.

Manufactured in the United States of America

Published by Van Nostrand Reinhold Company Inc.
135 West 50th Street
New York, New York 10020

Van Nostrand Reinhold Company Limited
Molly Millars Lane
Wokingham, Berkshire RG11 2PY, England

Van Nostrand Reinhold
480 Latrobe Street
Melbourne, Victoria 3000, Australia

Macmillan of Canada

Division of Gage Publishing Limited
164 Commander Boulevard
Agincourt, Ontario M1S 3C7, Canada

151413121110987654321
Library of Congress Cataloging in Publication Data

Mili, Ali.
An introduction to formal program verification.

Includes index. :

1. Computer programs— Verification. [. Title.
QA76.6.M5217 1984 001.64°2 84-3528
ISBN 0-442-26322-8

Preface

Programmer X is trying to write a computer program. He cannot explain pre-
cisely what function his program is computing or what function he wants it to
compute, but he is writing it anyway. His outer loop tests for a vatiable b being
non-zero (b # 0) but he cannot tell whether testing for b greater than zero (b
> 0) would work as well for his purposes; in fact he is not quite sure (b » 0)
is the right condition to test for (perhaps b > 0 is).

In the loop body of the outer loop is a while statement using a variable ¢;
variable ¢ is initialized before the outer loop, though the programmer suspects
he could also initialize it in the loop body, before the inner while statement.
The index i of the inner while statement is initialized to 2 but the programmer
suspects that, in order to take into account boundary values, he must set it to
1 and change the loop condition and the loop body accordingly. Since he is not
sure, he has chosen to try it as is on non-boundary values then eventually
change it to make it work for boundary values. '

Inside the inner loop is a statement ¢ := a/c; variable ¢ is supposed to be
non-zero before execution of this statement, but the programmer cannot tell
you why; using a goto statement he has made sure that whenever c is zero, the
contral jumps outside both loops and sends an error message. The test of the
inner loop is (i =< n), where n is the size of an array; the programmer suspects
that, in order to take into account the boundary condition n = 1 he should test
for (i < n) and move the incrementation i := i + 1 inside the loop body;
realizing that by doing so he causes an array reference out of bounds, the
programmer has fixed the problem by merely increasing the size of the
array by 1.

Now the program behaves reasonably well for the test values that the pro-
grammer has submitted to it; but the programmer can convince nobody (not
even himself, in fact) of the worth of his program.

The situation just described is typical of a programmer who lacks the back-
ground needed for a firm intellectual control of the programming process. This
background is not gained through an extensive practical experience of pro-
gramming (geperally, programming experience is not thought of as being

v

vi PREFACE

cumulative); rather it is gained through the formal study of the mathematical
processes underlying the programming process. Before one can undertake this
endeavor, one must come to terms with two simple premises we accept as facts:

— First, the premise that programs are mathematical objects about which
assertions can be made and proven, and that programming is essentially
a mathematical discipline. Indeed, computers do not behave randomly;
- rather, they behave in predictable, predefined ways. Advances in the
semantic definition of programming languages afford us the means to
capture the behavior of computers in ways that are both rigorous and
usable. :
~— Second, the premise that it is through a consistent and disciplined use of
the mathematics of programming that one can gain the necessary lati-
tude to intellectually manage the programming process. Applying math-
ematical formalisms to every statement, for every functional aspect is
neither practical nor necessary; it is however necessary to understand the
precise mechanics of the programming process and the precise semantics
of each statement one writes, and be ready to use this understanding.

In this book, I have tried to collect a number of program verification methods
and present them, as much as possible, with a common set of assumptions,
notations and concerns. These methods can be seen both as complementary and
as alternatives. Because each deals with one aspect of program complexity,
each is more appropriate than the others for a specific class of programs, and
this in a manner depending on where the burden of the complexity lies within
the program. From this standpoint they can be seen as alternatives. On the
other hand, because they give different perspectives on programs and their exe-
cutions, they can be seen as complementary.

Even though it is derived from course notes I have developed for a university
course, this book is meant to be of interest both to university students and to
practicing programmers. Having used manuscripts of this book to teach short
courses to practicing programmers, I have been repeatedly surprised by the
positive response of participants, who seem to find the material relevant to their
concerns. Whatever the reader’s background may be, the author hopes this
book will help him shape (or reshape) his view of programming for the better.

ALI MILI

Introduction

This is an outgrowth of notes 1 have prepared for courses I have offered in
formal program verification at Texas A&M University in College Station and
later, concurrently at McGill University in Montreal and Laval University
(francophone) in Quebec City. Even though it has Some ‘similarities with
" CS14—Software Design and Development—and CS20—Formal Methods in
Programming Languages-——in the ACM-recommended curricxﬂnm (see: Rec-
ommendations for Master’s Level Programs in Computer Science, CACM
24(3), March 1981), this course was most often taught as a graduate level
Special Topics Course. Its prerequisites are fairly modest: at Jeast one semester
of programming, using preferably a Pascal-like programming language; and a
semester of discrete mathematics, as covered, e.g. by C L Liu’s Elements of
Discrete Mathematics.

This book is based on the content developed for & fifteen-week course. Hence
many topics are not covered even though they are both intrinsically interesting
and quite relevant to program verification. These are, e.g.: specifying and ver-
ifying properties of data structures; verifying paralle! programs; specifying and
verifying cyclic programs; modal and temporal logic; program transformations;
dynamic logic; weakest preconditions and guarded commands. These are avail-
able in the literature and in advanced texts (sec bibliographic references).

In contrast with some earlier works on the subject, this book favors using
functions and relations rather than predicates to explain program correctness.
Also, no effort is made in the book to show how powerful program verification
is; i.e. we seldom prove the correctness of large programs. Rather, the book
concentrates on showing what program verification is. This choice of priorities
is motivated by practical concerns (to improve the readability of the book), and
tb some extent by its introductory nature.

The book is made up of five parts. Part I contains Chapters 1, 2 and 3 and
lays the background for the remainder of the book. Chapter 1 provides some
motivation for program verification and presents the global perspective of the
book. Chapter 2 presents some elements of discrete mathematics. Because most

vii

»
x

vili INTRODUCTION

of the material introduced is presumed known by the reader, more empbhasis is
placed on naming conventions and notational conventions than on the material
itself. Chapter 3 presents elements of logical expression and logical reasoning.

Part II contains Chapters 4, 5 and 6 and presents the basic formulas of pro-
gram correctness. Chapter 4 gives the mathematical definition of a specifica-
tion, Chapter 5 gives the mathematical definition of a program and Chapter 6

- deduces the formulas of correctness of a program with respect to a specification
- and introduces the symbolic execution method.

Part I1II contains Chapters 7 through 11 and presents inductive methods for
the proof of programs. A program is a multi-dimensional entity, with many
axes of complexity; each verification method is concerned with one particular
axis. Chapter 7 proves the correctness of programs by induction on their control
structure and Chapter 8 uses induction on their data structure. Chapter 9 pro-
ceeds by induction on the length of execution whereas Chapter 10 proceeds by
induction on the trace of execution. Finally, Chapter 11 discusses the semantics
of recursive programs for which two inductive proof methods are presented.

Part IV contains Chapter 12, 13 and 14 and addresses the logical conclusion
of program verification: program design. Chapters 12, 13 and 14 present
models of program design on the basis of (respectively): predicate decomposi-
tion, functional decomposition and relational decomposition. They differ solely
by how they represent specifications.

Part V presents three appendices. Appendix A is a BNF description of the
programming language adopted in this book: SM-Pascal (standing for simple
Pascal). Appendix B and Appendix C give some results on while statements
which are intended to give the reader some more insight into the richness of
iteration.

Each chapter has its own bibliography and practice set of problems, which
are an extension of the course material, and each chapter is divided into sec-
tions. Each section has its own set of exercises, which are applications of the
course material. Problems and exercises are labelled depending on their diffi-
culty: A is easy, B is medium and C is difficult. For some short chapters, a
single set of exercises is given at the end of the chapter, along with the set of
problems.

The words he, his and him are used to denote a person of either sex.

iff
t

EXXBPLAVARNINT E

*
»

® Ly §)l <>

ite

-,
-

def

Notations

least upper bound.

if and only if.

with respect to.

belongs to.

is a subset of. N
is a proper subset of. :
is different from.

is less than or equal.

is greater than or equal.

the subset of S for which predicate t holds.

the predicate true for elements of A and false for all others.
cartesian product of sets.

cartesian power of sets.

numerical product, or relative product of relations (context
distinguishes).

numerical power, or relative power of relations (context
distinguishes).

logical conjunction (“and”).

logical disjunction (*“or”).

logical negation (“not”).

logical censequence (“implies™).

logical equivalence (“is equivalent t0”).

for all.

there exists.

composition of expressions.

alternative expression.

conditional expression.

domain of definition of an

expression.

binary: addition.

x NOTATIONS

B-Tm>oC 1

-y
1

R(
L*(S)
(i—=J
[i—j]

RD

unary: transitive closure.
difference.

union.

intersection.

full relation.

identity relation.
equivalence class.

inverse of f.

transpose of R.

lists on space S.

path from i to j.

path function.

Predicate Decomposition.
Functional Decomposition.
Relational Decomposition.

Contents

Preface v
Introduction vii
Notations ix

L. Motivation and Background 1

1.

Motivation and Perspective 3

2. Mathematics for Programming 7
3. Formal Logic: Languages and Methods 29

II. Specification, Abstraction and Verification d

4. Specification 59
5. Execution and Functional Abstraction 68
6. Program Correctness and the Symbolic Execution Method 95

IIl. Verifying Programs by Induction 107

7.

8.

9.

10.
1.

Induction on the Control Structure: The Invariant Assertion
Method 109 '

Induction on the Data Structure: The Intermittent Assertion
Method 146

Induction on the Length of Execution: The Subgoal Induction
Method 163

Induction on the Trace of Execution: The Cutpoint Method 175
Proof of Recursive Functions 190

xi

xii CONTENTS

1V. Formal Program Design 213

12. Predicate Decomposition 215
13. Functional Decomposition 229
14. Relational Decomposition 245

V. Appendices 259

A. The BNF Syntax of SM-Pascal 261

B. Strongest Invariant Functions 267

C. The Self-Stabilizing Effect of While Statements 278
Index 285

Part I: Motivation and
Background

It is reasonable to hope that the relationship between Compu-
tation and Mathematical Logic will be as fruitful in the next
century as that between Analysis and Physics in the last. The
development of this relationship demands a concern for both
applications and for mathematical elegance.

John McCarthy, 1963.

Chapter 1 provides some motivation for the verification of programs and pre- -
sents the perspective and tone of this book. Chapter 2 introduces some elements
of discrete mathematics. Chapter 3 presents elements of logical expression
(propositions, predicates) and reasoning (induction and deduction).

Chapter 1

‘Motivation and Perspective

The purpose of this chapter is to highlight the mathematical nature of pro-
grams then discuss the perspective of this book with respect to the use of math-
ematics in program verification.

1 On the Richness of Programs

In this section we use a simple example to show how potentially rich (complex)
programs are. We consider the following two programs on integer variables a,
b and p:

M = (while b0 do begin p:=p+a; b:=b—1 end).
M’ = (while b>>0 do bégin p:=p+a; b:=b—1 end).

We wish to discuss the following questions:

a) Prove that if (a=a0 A b=b0 A p=0 A b0=0) before execution of M
then M terminates and p=a0*b0 after.

b) Let a0, b0 and pO be the values of variables a, b and p before execution of
M. What are the values of a, b and p after execution of M?

¢) Same question as (a), for program M’.

d) Same question as (b), for program M'.

Answers to these questions are briefly given below:

a) Claim: The assertion (a0*b0 = p-+a*b) holds after any number (including
zero) of iterations.
This claim can be proved by induction.
Basis of induction: a=a0 A b=b0 A p=0 A b0=0 = a0*b0=p+a*b.
Induction step: a0*b0=p+a*b =+ (a0*b0 = p+a + a*(b—1)). Because
b0=0 and because b decreases by decrements of 1, M terminates in a state
such that b=0. This, in conjunction with the assertion above yields the

- result sought.

3

4 I/MOTIVATION AND BACKGROUND

b) If b0O=0 then the final values of a, b and p are
a=a0, b=0, p=p0+a0*b0

else the final values of a, b and p are undefined.

¢) Claim: The assertion A = (a0*b0=p+a*b A b=0) holds after any num-
ber (including zero) of iterations. ,
We prove this claim. by induction:
Basis of induction: a=a0 A b= bO A p=0 A b0=0 = a0*b0=p+a*b
A b=0.
Induction step: If A = (a0*b0=p+a*b A b>0) holds at some iteration
and one more iteration is needed (b>>0) then A holds after the iteration
(a0*b0 = p+a + a*(b—1) A b—1=0). Because b0=0 and b decreases
at each step with a decrement of 1 the condition b>0 eventually becomes
false and the pyogram &xits; the conjunction of the two conditions (a0*b0 =
p+a*b A b>0) and (b=<<0) yields p=a0*b0.

d) If b0=>0 then the final values of a, b and p are

a=2a0, b=0, p=p0+a0*b0
else
| am=a0, b-bd,pnpo.
One may draw two lessons from the dist;ussions above:

— Even simple programs are hard to analyze: The discussions above are
not as straightforward and simple as the shortness and simplicity of pro-
grams-M and M’ may lead one to believe.

— Even simple changes to a program (b0 vs. b>>0) can cause a deep
impact on its functional properties; hence the need for programmers to
be aware of thé significance of every single symbol they write in their
program.

EY

2 Programming as a Mathematical Discipline

Programs are potentially complex objects. How does one tackle their complex-
ity? A cogent answer is given by Dijkstra ([1]):

As soon as programming emerges as a battle against unmastered complexlty, v
it is quite natural that one turns to that mental discipline whose main pur-

MOTIVATION AND PERSPECTIVE &

pose has been for centuries to apply effective structuring to otherwise unmas-
tered complexity. That mental discipline is more or less familiar to all of us,
it is called Mathematics. If we take the existence of the impressive body of
Mathematics as the experimental evidence for the opinion that for the
human mind the mathematical method is indeed the most effective way to
come to grips with complexity, we have no choice any longer: We should
r‘éshape our field of psogramming in such a way that, the mathematician’s
methods become equally applicable to our programming problems, for there
are no other means.

Mathematics (discrete mathematics, in particular) plays a dual role in the
functional analysis of programs, by enabling us to firmly grasp all the richness
of programs and to hdrness the complexity of programs by means of proper
strucfiring. . : _

The mastery of the Mathematics underlying the programming activity is a
key to effective program development. It is the basis for the intellectual control
of the programming process (notion due to Mills, [2]); this intellectual control
is virtually the only source of confidence that a programmer is entitled to have

-in his program. No amount of testing can certify the correctness of a program
becauge in general the number of possible test values is virtually infinite.

- Of course, the mathematical validation criteria that we use to prove pro-
grams porrect hdve intrinsic limitations.- The basic incompleteness results
(Halfing Problem, Church’s Thesis, . . .) already tell us that no absolute val-
idation critetia exist. But relative criteria do exist and some are quite effective.
There is a strong analogy here with physical theories whick can be absolutely
refuted by coaterexample but never absolutely validated through empirical

“confirmation (this did not prevent a relationship between mathematical anal-
ysis and physics to develop and be fruitful).

3 Perspective

In the fgllowing chapters, we shall discuss several aspects of the functional
.analysis of programs, along the various dimensions of complexity that a pro-
gram presents. In doing so, we shall use mathematics to formalize the func-
tional properties of programs, with an attempt to seek a proper balance
- between formality and intyition.
Through its wide range of program verification (analysis) methods, the book
seeks to achieve the following goals: ' : .

— Present and discuss effective and reliable means to verify that a program
is consistent with respect to the specification for which it was written.

6 1/MOTIVATION AND BACKGROUND

— Shed light into the essence of automatic computations and the mathe-
matical processes underlying the programming activity.
— Provide guidelines for the formal design of programs.

It is the second goal which is considered to be the most important one: It is
both the most fundamental one—for it encompasses the others—and the most
readily applicable one—for some theorems are so powerful that one cannot
keep programming the same way after one has understood them. Fortunately,
because of its logical nature, this understanding of programming scales up to
programs of any size.

Bibliography

1: Dijkstra, E W. On a Methodology of Design. MC-25 Informatica Symposium, MC track 37.
Mathematical Centrum, Amsterdam, 1971 pp 4.1-4.10.

2: Mills, H D. The Intellectual Control of Computers. Keynote address, The International Sym-
posium on Current Issues of Requirements Engineering Environments. Kyoto, Japan, Septem-
ber 20-21 1982. Yutaka Ohno, editor. North-Holland 1982.

