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Preface

I always thought I would write a book and this is it. In the end, though,
I hardly wrote it at all, it evolved from my research notes, from essays I
wrote for postgraduates starting work with me, and from lecture handouts
I distribute to students taking the relativistic quantum mechanics option in
the Physics department at Keele University. Therefore the early chapters
of this book discuss pure relativistic quantum mechanics and the later
chapters discuss applications of relevance in condensed matter physics.
This book, then, is written with an audience ranging from advanced
students to professional researchers in mind. I wrote it because anyone
aiming to do research in relativistic quantum theory applied to condensed
matter has to pull together information from a wide range of sources
using different conventions, notation and units, which can lead to a lot of
confusion (I speak from experience). Most relativistic quantum mechanics
books, it seems to me, are directed towards quantum field theory and
particle physics, not condensed matter physics, and many start off at
too advanced a level for present day physics graduates from a British
university. Therefore, I have tried to start at a sufficiently elementary
level, and have used the SI system of units throughout.

When I started preparing this book I thought I might be able to write
everything I knew in around fifty pages. It soon became apparent that
that was not the case. Indeed it now appears to me that the principal
decisions to be taken in writing a book are about what to omit. I have
written this much quantum mechanics and not used the word Lagrangian.
This saddens me, but surely must make me unique in the history of
relativistic quantum theory. I have not discussed the very interesting
quantum mechanics describing the neutrino and its helicity, another topic
that invariably appears in other relativistic quantum mechanics texts.
However, as we are leaning towards condensed matter physics in this
book, there are sections on topics such as magneto-optical effects and
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xvi Preface

magnetic anisotropy which don’t appear in other books despite being
intrinsically relativistic and quantum mechanical in nature. In the end,
what is included and what is omitted is just a question of taste, and it is
up to the reader to decide whether such decisions were good or bad.

This book is very mathematical, containing something like two thousand
equations. I make no apology for that. I think the way the mathematics
works is the great beauty of the subject. Throughout the book I try to
make the mathematics clear, but I do not try to avoid it. Paraphrasing
Niels Bohr I believe that “If you can’t do the maths, you don’t understand
it.” If you don’t like maths, you are reading the wrong book.

There are a lot of people I would like to thank for their help with, and
influence on, my understanding of quantum mechanics, particularly the
relativistic version of the theory. They are Dr E. Arola, Dr P.J. Durham,
Professor H. Ebert, Professor W.M. Fairbairn, Professor J.M.F. Gunn, Prof
B.L. Gyorffy, Dr R.B. Jones, Dr P.M. Lee, Dr J.B. Staunton, Professor
J.G. Valatin, and Dr W. Yeung.

Several of the examples and problems in this book stem from projects
done by undergraduate students during their time at Keele, and from
the work of my Ph.D students. Thanks are also due to them, C. Blewitt,
H.J. Gotsis, O. Gratton, A.C. Jenkins, PM. Mobit, and E. Pugh, and
to the funding agencies who supported them (Keele University physics
department, the EPSRC, and the Nuffield foundation).

There are several other people I would like to thank for their general
influence, encouragement and friendship. They are Dr T. Ellis, Professor
M.J. Gillan, Dr M.E. Hagen, Dr PW. Haycock, Mr J. Hodgeson and Mr
B.G. Locke-Scobie. I would also like to thank R. Neal and L. Nightingale
of Cambridge University Press for their encouragement of, and patience
with, me. Finally, my parents do not have a scientific background, nonethe-
less they have always supported me in my education and have taken a
keen interest in the writing of this book. Thanks are also due to them,
R.J. and V.A. Strange.

I hope you enjoy this book, although I am not sure ‘enjoy’ is the right
word to describe the feeling one has when reading a quantum mechanics
textbook. Perhaps it would be better to say that I hope you find this book
informative and instructive. What I would really like would be for you to
be inspired to look deeper into the subject, as I was by my undergraduate
lectures many years ago. Many people think quantum mechanics is not
relevant to everyday life, but it has certainly influenced my life for the
better! I hope it will do the same for you.
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1

The Theory of Special Relativity

Relativistic quantum mechanics is the unification into a consistent theory
of Einstein’s theory of relativity and the quantum mechanics of physicists
such as Bohr, Schrédinger, and Heisenberg. Evidently, to appreciate rel-
ativistic quantum theory it is necessary to have a good understanding of
these component theories. Apart from this chapter we assume the reader
has this understanding. However, here we are going to recall some of
the important points of the classical theory of special relativity. There is
good reason for doing this. As you will discover all too soon, relativistic
quantum mechanics is a very mathematical subject and my experience has
been that the complexity of the mathematics often obscures the physics
being described. To facilitate the interpretation of the mathematics here,
appropriate limits are taken wherever possible, to obtain expressions with
which the reader should be familiar. Clearly, when this is done it is useful
to have the limiting expressions handy. Presenting them in this chapter
means they can be referred to easily.

Taking the above argument to its logical conclusion means we should
include a chapter on non-relativistic quantum mechanics as well. However,
that is too vast a subject to include in a single chapter. Furthermore, there
already exists a plethora of good books on the subject. Therefore, where
it is appropriate, the reader will be referred to one of these (Baym 1967,
Dicke and Wittke 1974, Gasiorowicz 1974, Landau and Lifschitz 1977,
Merzbacher 1970, and McMurry 1993).

This chapter is included for revision purposes and for reference later
on, therefore some topics are included without much justification and
without proof. The reader should either accept these statements or refer
to books on the classical theory of special relativity. In the first section of
this chapter we state the fundamental assumptions of the special theory
of relativity. Then we discuss the Lorentz transformations of time and
space. Next we come to discuss velocities, momentum and energy. Then

1



2 1 The Theory of Special Relativity

we go on to think about relativity and the electromagnetic field. Finally,
we look at the Compton effect where relativity and quantum theory are
brought together for the first time in most physics courses.

1.1 The Lorentz Transformations

Newton’s laws are known to be invariant under a Galilean transformation
from one reference frame to another. However, Maxwell’s equations are
not invariant under such a transformation. This led Michelson and Morley
(1887) to attempt their famous experiment which tried to exploit the non-
invariance of Maxwell’s equations to determine the absolute velocity of
the earth. Here, I do not propose to go through the Michelson—-Morley
experiment (Shankland et al. 1955). However, its failure to detect the
movement of the earth through the ether is the experimental foundation
of the theory of relativity and led to a revolution in our view of time
and space. Within the theory of relativity both Newton’s laws and the
Maxwell equations remain the same when we transform from one frame
to another. This theory can be encapsulated in two well-known postulates,
the first of which can be written down simply as

(1) All inertial frames are equivalent.

By this we mean that in an isolated system (e.g. a spaceship with no
windows moving at a constant velocity v (with respect to distant stars or
something)) there is no experiment that can be done that will determine v.
According to Feynman (1962) this principle has been verified experimen-
tally (although a bunch of scientists standing around in a spaceship not
knowing how to measure their own velocity is not a sufficient verification).
Here, we are implicitly assuming that space is isotropic and uniform. The
second postulate is

(2) There exists a maximum speed, c. If a particle is measured to have
speed c in one inertial frame, a measurement in any other inertial frame will
also give the value c (provided the measurement is done correctly). That is,
the speed of light is independent of the speed of the source and the observer.

The whole vast consequences of the theory of relativity follow directly
from these two statements (French 1968, Kittel et al. 1973). It is necessary
to find transformation laws from one frame of reference to another that
are consistent with these postulates (Einstein 1905). Consider a Cartesian
frame S in which there is a source of light at the origin. At time t = 0
a spherical wavefront of light is emitted. The distance of the wavefront
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Fig. 1.1. (a) Att =1t =0 the two frames are coincident and observers O and O’
are at the origin. At this time a spherical wavefront is emitted. (b) At a time t > 0
as viewed by an observer stationary in the unprimed frame. Observer O is at the
centre of the wavefront. (c) At a time ¢’ > 0 as viewed by an observer stationary
in the primed frame. Observer O’ is at the centre of the wavefront. Note that in
(b) and (c) it is not possible for the observer not at the centre of the wavefront
to be outside the wavefront.

from the origin at any subsequent time ¢ is given by
x? +y* 4 22 = P (1.1)

Now consider a second frame S’ moving in the x-direction with velocity v
relative to S. Let us set up S’ such that its origin coincides with the origin
of S at ' =t = 0 when the wavefront is emitted. Now the equation giving
the distance of the wavefront from the origin of S’ at a subsequent time
t' as measured in S’ is

X2+ y?+ 2% =c*? (1.2)

So, at all times t,t’ > 0, observers at the origin of both frames would
believe themselves to be at the centre of the wavefront. However, each
observer would see the other as being displaced from the centre. This is
illustrated in figure 1.1. It can easily be seen that a Galilean transformation
relating the coordinates in equations (1.1) and (1.2) does not give consistent
results. A set of coordinate transformations that are consistent with (1.1)
and (1.2) is

— vt t— 2
x’ = ___x__._v____ y' =y, z/ =7, t' = _L/C) (13a)

V1 —vz/cz,



4 1 The Theory of Special Relativity

and the inverse transformations are
x' + vt , L ¢+ (x'v/c?)

B N (e

These equations are known as the Lorentz transformations. Under these
transformations the interval s defined by

s2=(ct)P—x?=y?—z? =(ct)* = x* — y* - 7? (1.4)

(1.3b)

is a constant in all frames.
It is conventional to adopt the notation

1

Y= ——, B=v/c (1.5)
V1—v?/c?

Equations (1.3) lead to some startling conclusions. Firstly consider mea-
surements of length. If we measure the length of a rod by looking at the
position of its ends relative to a ruler, then if in the S frame the rod is
at rest we can measure the ends at x; and x; and infer that its length
is L = x; — x;. Now consider the situation in the primed frame. The
observer will measure the ends as being at points xj and x, and hence
L' = x, — x}. We want to know the relation between these two lengths.
The rod is moving at velocity —v in the x-direction relative to the observer
in §’. To find the length this observer must have measured the position
of the ends simultaneously (at tp) in his frame. So, considering the first of
equations (1.3b) we have

x} + vty x5 + vty

T imwe T s

Subtracting these equations leads directly to

L' = x5 —x} = /(1 —v?/c2)(x2 — x1) = /(1 —v?/c?)L (1.7)

This is the famous Lorentz-Fitzgerald contraction and is illustrated in
figure 1.2. It shows that observers in different inertial frames of reference
will measure lengths differently. The length of any object takes on its
maximum value in its rest frame. Let us emphasize that nothing physical
has happened to the rod. Measuring the length of the rod from one refer-
ence frame is a different experiment to measuring the length from another
reference frame, and the different experiments give different answers. The
process of measuring correctly gives a different result in different inertial
frames of reference.

The above description of Lorentz—Fitzgerald contraction depended cru-
cially on the fact that the observer in S’ performed his measurements of

(1.6)
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y (a) y' (b)

Fig. 1.2. Here are two rods that are identical in their rest frames with length
L. In (a) we are in the rest frame of the lower rod. The upper rod is moving in
the positive x-direction with velocity v and is Lorentz-Fitzgerald contracted so
that its length is measured as L/y. In (b) we are in the rest frame of the upper
rod and the lower rod is moving in the negative x-direction with velocity —v. In
this frame of reference it is the lower rod that appears to be Lorentz-Fitzgerald
contracted.

the position of the end points simultaneously. It is important to note that
simultaneous in S’ does not mean simultaneous in S. So the fact that the
light from the ends of the rod arrived at the observer in S’ at the same
time does not mean it left the ends of the rod at the same time. This is
trivial to verify from the time transformations in equations (1.3).

Next we consider intervals of time. Imagine a clock and an observer in
frame S at rest with respect to the clock. The observer can measure a time
interval easily enough as the time between two readings on the clock

T=1—1 (1.8)

Now we can use the Lorentz time transformations to find the times ¢; and
t) as measured by an observer in S’ again moving with velocity v in the
x-direction relative to the observer in S:

,_h — (x1v/c?)

We can subtract one of these from the other to discover how to transform
time intervals from one frame to another:

(1.9)

tp—1

ﬁ=}’(t2—tl)
—v?/c

th—t) = (1.10)
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where we have set x,—x; = 0. This is obviously true as the clock is defined
as staying at the same coordinate in 'S. What we have found here is the
time dilation formula. The time interval measured in S’ is longer than the
time interval measured in S. Another way of stating the same thing is to
say that moving clocks appear to run more slowly than stationary clocks.
This, of course, is completely counter-intuitive and takes some getting used
to. However, it has been well established experimentally, particularly from
measurements of the lifetime of elementary particles. It is also responsible
for one of the most famous of all problems in physics, the twin paradox.

Next, let me describe a thought experiment that one can do, which de-
mystifies time dilation to some extent, and shows explicitly that it arises
from the constancy of the speed of light. Consider a train in its rest frame
S as shown in the top diagram in figure 1.3 (with a rather idealized train).
Light is emitted from a transmitter/receiver on the floor of the train in a
vertical direction at time zero. It is reflected from a mirror on the ceiling
and the time of its arrival back at the receiver is noted. The ceiling is at
a height L above the floor, so the time taken for the light to make the
return journey is

t= 2L (1.11)
c

Now suppose there is an observer in frame S’, i.e. sitting by the track
as the train goes past while the experiment is being done, and there is
a series of synchronized clocks in this frame. This is shown in the lower
part of figure 1.3. The observer in S’ can also time the light pulse. Using
Pythagoras’s theorem it is easy to see from the figure that when the light
travels a distance L in S, it travels a distance (L? + (3v¢')*)'/? in §’, and
it goes the same distance for the reflected path. So the total distance
travelled as viewed by the observer in S’ is

d = 2(L* + (Jor')?)'/2 (1.12)
But the velocity of light is the same in all frames. So
d* = *1? = 4L? + v¥? (1.13)

Rearranging this

, 2L 2L

Thus if the clock in the train tells us the light’s journey time was t, the
clocks by the side of the track tell us it was yt > t. Sc, to the observer
at the side of the track, the clock in S will appear to be running slowly.
Equation (1.14) is exactly the same as equation (1.10) wkich was obtained
directly from the Lorentz transformations.
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Fig. 1.3. Thought experiment illustrating time dilation, as discussed in the text.
The upper figure shows the experiment in the rest frame of the train and the
lower figure shows it in the frame of an observer by the side of the track.

Equations (1.3) are easy to derive from the postulates, and easy to apply.
However, their meaning is not so clear. In fact they can be interpreted in
several ways. Depending on the circumstances, I tend to think of them in
two ways. Firstly, a rather woolly and obvious statement. At low velocities
non-relativistic mechanics is OK because the time taken for light to get
from the object to the detector (your eye) is infinitesimal compared with
the time taken for the object to move, so the velocity of light does not affect
your perception. However, when the object is moving at an appreciable
fraction of the speed of light, the time taken for the light to reach your
eye does have an appreciable effect on your perception. Secondly, a rather
grander statement. Let us consider space and time as different components
of the same thing, as is implied by equations (1.1) and (1.3). Any observer
(Observer 1) can split space-time into space and time unambiguously,
and will know what he or she means by space and time separately. Any
observer (Observer 2) moving with a non-zero velocity with respect to
Observer 1 will be able to do the same. However, Observer 2 will not split
up time and space in the same way as Observer 1. Observers in different
inertial frames separate time and space in different ways!

1.2 Relativistic Velocities

Once we have the Lorentz transformations for position and time, it is an
easy matter to construct the velocity transformation equations. As before,



