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The name ‘‘real analysis” is something of an anachronism. Originally applied to the
theory of functions of a real variable, it has come to encompass several subjects of
a more general and abstract nature that underlie much of modern analysis. These
general theories and their applications are the subject of this book, which is intended
primarily as a text for a graduate-level analysis course. Chapters 1 through 7 are
devoted to the core material from measure and integration theory, point set topology,
and functional analysis that is a part of most graduate curricula in mathematics,
together with a few related but less standard items with which I think all analysts
should be acquainted. The last four chapters contain a variety of topics that are meant
to introduce some of the other branches of analysis and to illustrate the uses of the
preceding material. I believe these topics are all interesting and important, but their
selection in preference to others is largely a matter of personal predilection.
The things one needs to know in order to read this book are as follows:

1. First and foremost, the classical theory of functions of areal variable: limits and
continuity, differentiation and (Riemann) integration, infinite series, uniform
convergence, and the notion of a metric space.

2. The arithmetic of complex numbers and the basic properties of the complex
exponential function e*t% = e®(cosy + isiny). (More advanced results
from complex function theory are used only in the proof of the Riesz-Thorin
theorem and in a few exercises and remarks.)

3. Some elementary set theory.




PREFACE

4, A bit of linear algebra — actually, not much beyond the definitions of vector
spaces, linear mappings, and determinants. )

All of the necessary material in (1) and (2) can be found in W. Rudin’s classic Princi-
ples of Mathematical Analysis (3rd ed., McGraw-Hill, 1976) or its descendants such
as R. S. Strichatrz’s The Way of Analysis (Jones and Bartlett, 1995) or S. G. Krantz’s
Real Analysis and Foundations (CRC Press, 1991). A summary of the relevant facts
about sets and metric spaces is provided here in Chapter 0. The reader should be-
gin this book by examining §0.1 and §0.5 to become familiar with my notation and
terminology; the rest of Chapter O can then be referred to as needed.

Each chapter concludes with a section entitled “Notes and References.” These
sections contain miscellaneous remarks, acknowledgments of sources, indications
of results not discussed in the text, references for further reading, and historical
notes. The latter are quite sketchy, although references to more detailed sources are
provided; they are intended mainly to give an idea of how the subject grew out of its
classical origins. I found it entertaining and instructive to read some of the original
papers, and I hope to encourage others to do the same.

A sizable portion of this book. is devoted to exercises. They are mostly in the
form of assertions to be proved, and they range from trivial to difficult; hints and
intermediate steps are provided for the more complicated ones. Every reader should
. peruse them, although only the most ambitious will try to-work them all out. They
serve several purposes: amplification of results and completion of proofs in the
text, discussion of examples and counterexamples, applications of theorems, and
development of further ideas. Instructors will probably wish to do some of the
exercises in class; to maximize flexibility and minimize verbosity, I have followed
the principle of “When in doubt, leave it as an exercise,” especially with regard
to examples, Exercises occur at the end of each section, but they are numbered
consecutively within each chapter. In referring to them, “Exercise n” means the nth
exercise in the present chapter unless another section is explicitly mentioned.

The topics in the book are arranged so as to allow some flexibility of presentation.
For example, Chapters 4 and 5 do not depend on Chapters 1-3 except for a few
examples and‘éxercises. On the other hand, if one wishes to proceed quickly to Lr
theory, one can skip from §3.3 to §§5.1-2 and thence to Chapter 6. Chapters 10
and 11 are independent of Chapters 8 and 9 except that the ideas in §8.6 are used in
Chapter 10. :

The new features of this edition are as follows:

o The material on the n-dimensional Lebesgue integral (§§2.6-7) has been rear-
ranged and expanded.

» Tychonoff’s theorem (§4.6) is proved by an elegant argument recently discov-
ered by Paul Chernoff.

e The chapter on Fourier analysig has been split into two chapters (8 and 9).
The material on Fourier series and integrals (§§8.3-5) has been rearranged and
now contains the Dirichlet-Jordan thecrem on convergence of Fourier series.




PREFACE

The material on distributions (§89.1-2) has been extensively rewritten and
expanded.

\
e A section on self-similarity and Hausdorff dimension (§11.3) has been added,
replacing the outdated calculation of the Hausdorff dimension of Cantor sets
in the old §10.2.

"o Innumerable small changes have been made in the hope of improving the
exposition.

The writer of a text on such a well-developed subject as real analysis must neces-
sarily be indebted to his predecessors. I kept a large supply of books on hand while
writing this one; they are too numerous to list here, but most of them can be found
in the bibliography. I am also happy to acknowledge the influence of two of my
teachers: the late Lynn Loomis, from whose lectures I first learned this subject, and
Elias Stein, who has done much to shape my point of view. Finally, I am grateful to
a number of people — especially Steven Krantz, Kenneth Ross, and William Faris
— whose comments and corrigenda concerning the first edition have helped me to
prepare the new one.

GERALD B. FOLLAND

Seatile, Washington
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