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Preface

At the middle of the twentieth century, the theory of analytic functions of a
complex variable occupied an honored, even privileged, position within the canon
of core mathematics. This “particularly rich and harmonious theory," averred
Hermann Weyl, “is the showpiece of classical nineteenth century analysis."! Lest
this be mistaken for a gentle hint that the subject was getting old-fashioned, we
should recall Weyl’s characterization just a few years earlier of Nevanlinna’s theory
of value distribution for meromorphic functions as “one of the few great mathemat-
ical events in our century."? Leading researchers in areas far removed from function
theory seemingly vied with one another in affirming the “permanent value"?® of the
theory. Thus, Clifford Truesdell declared that “conformal maps and analytic func-
tions will stay current in our culture as long as it lasts";* and Eugene Wigner,
referring to “the many beautiful theorems in the theory ... of power series and of
analytic functions in general," described them as the “most beautiful accomplish-
ments of [the mathematician’s| genius."? Little wonder, then, that complex function
theory was a mainstay of the graduate curriculum, a necessary and integral part of
the common culture of all mathematicians.

Much has changed in the past half century, not all of it for the better. From
its central position in the curriculum, complex analysis has been pushed to the
marging. [t is now entirely possible at some institutions to obtain a Ph.D. in
mathematics without being exposed to the basic facts of function theory, and
(incredible as it may seem) even students specializing in analysis often fulfill degree
requirements by taking only a single semester of complex analysis. This, despite
the fact that complex variables offers the analyst such indispensable tools as power
series, analytic continuation, and the Cauchy integral. Moreover, many important
results in real analysis use complex variables in their proofs. Indeed, as Painlevé
wrote already at the end of the nineteenth century, “Between two truths of the
real domain, the easiest and shortest path quite often passes through the complex

'Hermann Weyl, A half-century of mathematics, Amer. Math. Monthly 58 (1951), 523-553,
p. 526.

2Hermann Weyl, Meromorphic Functions and Analytic Curves, Princeton University Press,
1943, p. 8.

3G. Kreisel, On the kind of data needed for a theory of proofs, Logic Colloquium 76, North
Holland, 1977, pp. 111-128, p. 118.

AC. Truesdell, Siz Lectures on Modern Natural Philosophy, Springer-Verlag, 1966, p. 107.

SEugene P. Wigner, The unreasonable effectiveness of mathematics in the natural sciences,
Comm. Pure Appl. Math. 13 (1960), 1-14, p. 3.

ix



x PREFACE
domain,"® a claim endorsed and popularized by Hadamard.” Our aim in this little
book is to illustrate this thesis by bringing together in one volume a variety of
mathematical results whose formulations lie outside complex analysis but whose
proofs employ the theory of analytic functions. The most famous such example
is, of course, the Prime Number Theorem; but, as we show, there are many other
examples as well, some of them basic results.

For whom, then, is this book intended? First of all, for everyone who loves
analysis and enjoys reading pretty proofs. The technical level is relatively
modest. We assume familiarity with basic functional analysis and some elementary
facts about the Fourier transform, as presented, for instance, in the first author’s
Functional Analysis (Wiley-Interscience, 2002), referred to henceforth as [FA|. In
those few instances where we have made use of results not generally covered in
the standard first course in complex variables. we have stated them carefully and
proved them in appendices. Thus the material should be accessible to graduate
students. A second audience consists of instructors of complex variable courses
interested in enriching their lectures with examples which use the theory to solve
problems drawn from outside the field.

Here is a brief summary of the material covered in this volume. We begin with
a short account of how complex variables yields quick and efficient solutions of two
problems which were of great interest in the seventeenth and eighteenth centuries,
viz., the evaluation of "7 1/n? and related sums and the proof that every algebraic
equation in a single variable (with real or even complex coefficients) is solvable in
the field of complex numbers. Next, we discuss two representative applications of
complex analysis to approximation theory in the real domain: weighted polynomial
approximation on the line and uniform approximation on the unit interval by linear
combinations of the functions {z™*}, where ny — oo (Miintz's Theorem). We then
turn to applications of complex variables to operator theory and harmonic analysis.
These chapters form the heart of the book. A first application to operator theory
is Rosenblum’s elegant proof of the Fuglede-Putnam Theorem. We then discuss
Toeplitz operators and their inversion, Beurling’s characterization of the invari-
ant subspaces of the unilateral shift on the Hardy space H? and the consequent
divisibility theory for the algebra B of bounded analytic functions on the disk or
half-plane, and a celebrated problem in prediction theory (Szegd’s Theorem). We
also prove the Riesz-Thorin Convexity Theorem and use it to deduce the bound-
edness of the Hilbert transform on LP(R), 1 < p < oc. The chapter on applications
to harmonic analysis begins with D.J. Newman'’s striking proof of Fourier unique-
ness via complex variables; continues on to a discussion of a curious functional equa-
tion and questions of uniqueness (and nonuniqueness) for the Radon transform; and
then turns to the Paley-Wiener Theorem, which together with the divisibility the-
ory for B referred to above is exploited to provide a simple proof of the Titchmarsh
Convolution Theorem. This chapter concludes with Hardy’s Theorem, which quan-
tifies the fact that a function and its Fourier transform cannot both tend to zero

S¢Entre deux vérités du domain réel, le chemin le plus facile et le plus court passe bien
souvent par le domaine complexe." Paul Painlevé, Analyse des travaur scientifiques, Gauthier-
Villars, 1900, pp.1-2.

7“It has been written that the shortest and best way between two truths of the real domain
often passes through the imaginary one." Jacques Hadamard, An Essay on the Psychology of
Invention in the Mathematical Field, Princeton University Press, 1945, p. 123.
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too rapidly. The final chapters are devoted to the Gleason-Kahane-Zelazko Theo-
rem (in a unital Banach algebra, a subspace of codimension 1 which contains no
invertible elements is a maximal ideal) and the Fatou-Julia-Baker Theorem (the
Julia set of a rational function of degree at least 2 or a nonlinear entire function is
the closure of the repelling periodic points). We end on a high note, with a proof
of the Prime Number Theorem. A coda deals very briefly with two unusual appli-
cations: one to fluid dynamics (the design of shockless airfoils for partly supersonic
flows), and the other to statistical mechanics (the stochastic Loewner evolution).
To a certain extent, the choice of topics is canonical; but, inevitably, it has
also been influenced by our own research interests. Some of the material has been
adapted from [FA]. Our title echoes that of a paper by the second author.®
Although this book has been in the planning stages for some time, the actual
writing was done during the Spring and Summer of 2010, while the second author
was on sabbatical from Bar-Ilan University. He thanks the Courant Institute of
Mathematical Sciences of New York University for its hospitality during part of this
period and acknowledges the support of Israel Science Foundation Grant 395/07.
Finally, it is a pleasure to acknowledge valuable input from a number of friends
and colleagues. Charles Horowitz read the initial draft and made many useful com-
ments. David Armitage, Walter Bergweiler, Alex Eremenko, Aimo Hinkkanen, and
Tony O’Farrell all offered perceptive remarks and helpful advice on subsequent ver-
sions. Special thanks to Miriam Beller for her expert preparation of the manuscript.

Peter D. Lax Lawrence Zalcman

New York, NY Jerusalem, Israel

8Lawrence Zaleman, Real proofs of complex theorems (and vice versa), Amer. Math. Monthly
81 (1974), 115-137.
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CHAPTER 1

Early Triumphs

Nothing illustrates the extraordinary power of complex function theory better
than the ease and elegance with which it yields results which challenged and often
baffled the very greatest mathematicians of an earlier age. In this brief chapter,
we consider two such examples: the solution of the “Basel Problem" of evaluating
377 1/n? and the proof of the Fundamental Theorem of Algebra. To be sure, these
achievements predate the development of the theory of analytic functions; but, even
today, complex variables offers the simplest and most transparent approach to these
beautiful results.

1.1. The Basel Problem

Surely one of the most spectacular applications of complex variables is the use
of Cauchy’s Theorem and the Residue Theorem to find closed form expressions for
definite integrals and infinite sums. As an illustration, we evaluate the sums

— 1
c(zk):n;nﬁ, k=1,2,....
The function )
H(z) = oo

is meromorphic on C with simple poles at the integers, each having residue 1, and no
other singularities in the finite plane. It follows that if f is a function aualytlc near
the point z = n (n € Z), then Res(H(z)f(z),n) = f(n). We choose f(z) = 1/2%*
for k fixed and consider the integral
1 1

1.1 Iy = — H(z)—dz,
(L) ¥ =g ) HO e
where N is a positive integer and I'x is the positively oriented boundary of the
square with vertices at the points (N + 1/2)(£1 £ 7). By the Residue Theorem,

N
(1.2) Iy = Z Res(H(z) = ) Rea(H(z s >+2212k

n=—N

A routine estimate shows that H is uniformly bounded on I'y with bound inde-
pendent of N. Thus

1
(z) % = =0 (le) on I'n;

and since I' y has length 8NV + 4, it follows from (1.1) that

1
INZO(W>-

1



2 1. EARLY TRIUMPHS

Thus lim Iy =0, so from (1.2), we obtain
N—oc

= 1 1 1
(13) Z’nﬁ — —5 Res H(z)d—k.[) .
n=1 -

To evaluate the right hand side of (1.3) explicitly, recall that the Bernoulli
numbers B,, are defined by

T 2. Byzt

k) v —1 7l

In particular, By =1, By = —-1/2, B, = 1/6, By = —1/30, Bg = 1/42, By = —1/30,
Bip = 5/66, Bis = —691/2730. Now from (1.4), we have

2 X, By(2mi)tzt1
H(z) = e2miz _ 1 :Z 7 ’
£=0

so that the coefficient of 1/z in the Laurent expansion of H(z)/z%* about 0 is given
by

T L o) _ (C1*Ba(2m)
Plugging this into (1.3) yields
o 1 (_1)k+122k—1 -

which is the desired formula. In particular, taking k = 1, we have

o<

1 w2
¢(2) =Zm =

n=1

oo

CoMMENTs. 1. Evaluating the sum ) -l; was a celebrated problem in the
n=1

mathematics of the late seventeenth and early eighteenth centuries. Originally

posed by Pietro Mengoli in 1644, it was brought to public attention by Jacob
Bernoulli in his Tractatus de Seriebus Infinitis (1689) and became known as the
Basel Problem. After many unsuccessful attempts by leading mathematicians, it
was finally solved in 1735 by Leonhard Euler, who produced a rigorous proof of the
result in 1741. Euler went on to discover the general formula for ((2k), evaluating
the sums explicitly for £ up to 13. Of course, Euler’s arguments did not make use
of complex analysis, as that subject did not yet exist.
x
2. Expressing ((3) = ). % in a simple closed form (or proving that no such
n=1
expression exists) remains an open problem of considerable interest; ditto for higher
odd powers. It is known (Apéry) that ¢(3) is an irrational number; for a proof,
see |B].
3. An extensive array of applications of the calculus of residues are displayed
in the two volumes [MK1|, [MK2]|.
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Bibliography
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1.2. The Fundamental Theorem of Algebra

The Fundamental Theorem of Algebra (FTA) asserts that a nonconstant poly-
nomial

(1.5) p(z) = a2 +an_12" 1+t ap

with complex coefficients must vanish somewhere in the complex plane.
Eighteenth century attempts to establish this result (for polynomials with real coef-
ficients) by such worthies as Euler, Lagrange, and Laplace all proved fatally flawed;
and even the geometric proof proposed by Gauss in 1799 had a (topological) gap,
which was filled only in 1920 (by Alexander Ostrowski [O]; cf. [Sm, pp. 4-5]).
Thus, the first rigorous proof of the theorem, published by Argand in 1814, marks
an early high water mark for nineteenth century mathematics.

Complex function theory offers a particularly efficient approach for proving
FTA: and proofs using such results as Liouville’s Theorem, the Maximum
Principle, the Argument Principle, and Rouché’s Theorem appear in the standard
texts. Surprisingly, however, the simplest and shortest proof, based on the Cauchy
Integral Formula for circles, does not seem to have been recorded in the textbook
literature.

Proor oF FTA. Let the polynomial p be given by (1.5), where n > 1 and
a, # 0. First observe that

(1.6) Rlim Ip(Re'®)| = oo uniformly in 6
L —> 00
since
n an
1p(2)] = 121" (lan] — lan—1]/12] — - — laol/|z") > 122 o

2

for z sufficiently large.
Now suppose that p does not vanish on C. Then ¢ = 1/p is analytic throughout
C and ¢(0) = 1/p(0) # 0. By Cauchy's integral formula,

_ q(z) Z_L o (0
(1.7) q(0) /|;|=R d —271_/0 q(Re™)db

2mi z

for all R > 0. But the integral on the right hand side of (1.7) tends to 0 by (1.6)
as R — oo, and we have the desired contradiction. a

CoMMENT. The proof given above is taken from [Z]; cf. [Sc| and the discussion
in [V].
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CHAPTER 2

Approximation

Analyticity can often be exploited to advantage in the study of problems of
approximation, even when the objects to be approximated are functions of a real
variable. We illustrate this point in the following two sections. In each of them, an
essential role is played by the following basic result from functional analysis, known
as the spanning criterion.

SPANNING CRITERION. A point z of a normed linear space X belongs to the
closed linear span Y of a subset {y;} of X if and only if every bounded linear
functional ¢ that vanishes on the subset vanishes at z, that is,

(*) Uy;) =0 for all Yj

implies that ¢(z) = 0.
In particular, the linear combinations of {y;} span all of X if and only if no
bounded linear functional ¢ satisfies (*) other than ¢ = 0.

For the proof, based on the Hahn-Banach Theorem, see [FA, pp. 77-78|.

2.1. Completeness of Weighted Powers

Let w be a given positive continuous function defined on R that decays expo-
nentially as || — oo :

(2.1) 0 <w(t) < ae™, &=
Denote by C the set of continuous functions on R that vanish at oo :

lim z(t) = 0.

[t|—o0
Then Cy is a Banach space under the maximum norm.

THEOREM 2.1. The functions t"w(t), n=0,1,2,..., belong to Cy; their closed
linear span is all of Cy. That is, every function in Cy can be approzimated uniformiy
on R by weighted polynomials.

PrROOF. We apply the spanning criterion. Let £ be any bounded linear func-
tional over Cj that vanishes on the functions t™w :

(2.2) ((t"w) =0, n=0,1,....
Let z be a complex variable, |Im z| < ¢. Then w(t)e*** belongs to Cp, and so

f(z) = t(we'™)



6 2. APPROXIMATION

is defined in the strip | Im z| < ¢. We claim that f is analytic there. For the complex
difference quotients of we'*! tend to iwte'** in the norm of Cy, and so

P fary DET ) =F2) _ . kbt . SUNTP
fl(z) = }1_1)% 5 = }1_%[ w 5 = {(iwte'?").
Similarly for the higher derivatives; in particular, using (2.2), we have
mn
it = " (wt™) =0, e | i
dz"|,_,

Since f is analytic, the vanishing of all its derivatives at z = 0 means that f(z) =0
in the strip; in particular,

f(z) = f(we'™) =0 for all z real.

By the spanning criterion, it follows that all functions we*** belong to the closed
linear span of ¢"w.

According to the Weierstrass approximation theorem, every continuous periodic
function A is the uniform limit of trigonometric polynomials. It follows that wh
belongs to the closed linear span of the functions we**!, z real, hence of the functions
t"w. Let y be any continuous function of compact support; define = by

Y
(2.3) z=_
Denote by h a 2p periodic function such that
(2.4) z(t) = h(t) for |t| < p,

where p is chosen so large that the support of x is contained in the interval |t| < p.
Then

l:l: = hlmax < ‘ﬂmax?

and so, by (2.3), (2.4), and (2.1),
ly — wh|max < ae”P|z|max-

This shows that as p — oo, wh — y. Since wh belongs to the closed linear span of
the functions t"w, so does y. The functions y of compact support are dense in Cj,
and the proof is complete. O

COMMENT. Let w be a nonnegative function defined on R. The polynomials
are said to be complete with respect to the weight w if for each f € C(IR) such that

(2.5) | 1‘131 w(z)|f(z)| =0,

there exists, for each € > 0, a polynomial P such that
w(z)|f(z) — P(z)| <e for all z eR.

The problem of finding necessary and sufficient conditions for the polynomials to
be complete with respect to w was posed by S.N. Bernstein in 1924 and solved in
full generality some thirty years later by S.N. Mergelyan. Mergelyan’s beautiful
survey article [M] contains a complete account of these developments, illustrated
with many illuminating examples.

To connect this with the problem considered above, observe that if the poly-
nomials are complete with respect to the positive weight w, then every function
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g € Cy can be approximated uniformly by weighted polynomials. Indeed, f = g/w
then satisfies (2.5), and so for each € > 0, there exists a polynomial P such that

lg(z) —w(z)P(z)| = w(z)|f(z) — P(x)|<e forall zeR.

Bibliography
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(1958), 59-106.

2.2. The Miintz Approximation Theorem

According to the Weierstrass approximation theorem, any continuous function
x(t) on the interval [0, 1] can be approximated uniformly by polynomials in ¢. Let
n be a positive integer. Clearly, if z(t) is continuous on [0, 1], so is

y(s) = z(s'/™).

Now y(s) can be approximated arbitrarily closely in the maximum norm by
polynomials p(s). Setting s = t™, we conclude that z(t) can be approximated arbi-
trarily closely by linear combinations of ™, j = 0,1, ... . Thus, not all powers of ¢
are needed in the Weierstrass approximation theorem.

Serge Bernstein posed the problem of determining those sequences of positive
numbers {\;} tending to oo which have the property that the closed linear span of
the functions

(2.6) {1,¢7, 822 .}

is the space C[0,1] of all continuous functions on [0,1]. After some preliminary
results were obtained by Bernstein, Miintz [M] proved the following theorem.

THEOREM 2.2. Let {\;} be a sequence of distinct positive numbers tending to
oo. The functions (2.6) span the space C = C[0,1] if and only if

= 1
(2'7) J; )\—J = .

PROOF. First we show that if condition (2.7) holds, the functions in (2.6) span
C. Let ¢ be a bounded linear functional on C' that vanishes on all the functions
(2.6):
(2.8) ((tY) =0, ji=1,2,....
Let z be a complex variable, Re z > 0. For such z, the function ¢* belongs to C and
depends analytically on z, in the sense that
tz+(§ — 7

lim ——— = (log t)t*

o~ e
exists in the norm topology of C. Define
(2.9) £(2) = 6.
Then f is an analytic function of z. Furthermore, since ¢ is bounded (say |¢|| < 1)
and [t*| <1 when 0 <t <1 and Rez > 0, it follows from (2.9) that

(2.10) If(z)] <1 for Rez > 0.



