NONLINEAR »
PHYSICAL il 35
SCIENCE

Marat Akhmet
Mehmet Onur Fen

Replication of Chaos in Neural
Networks, Economics and Physics




Marat Akhmet
Mehmet Onur Fen

Replication of Chaos
in Neural Networks,
Economics and Physics

MG, ZFFFINE hEY
e /B =l

Coll e
g HIGHER EDUCATION PRESS



Authors

Marat Akhmet Mehmet Onur Fen
Department of Mathematics Neuroscience Institute
Middle East Technical University Georgia State University
Ankara Atlanta, GA

Turkey USA

EHERSBE (C1P) #E
LR RALE . G AR R H =

Replication of Chaos in Neural Networks, Eonomics
and Physics : 23 / (+) Flsailds, (1) %% . —
Jent - REAEHMRIE, 2015. 10

(ARER YRR 7 PR, (st ) (AR RIEESER,
(=8) FIHSRIRAERT 40 )

ISBN 978—7—04—043102—5

[.Off 0. O @ M. ORI — i
55 — 9 IV . (D 04155

rhIERCATE 51 CIp #ieki (2015) 5196164 5

|

HRIGRAE  TANTE THEGREE  ERAAE Hmisit # DUEENH] @ K

B
S

kT E%E ket LTS 400-810-0598

fan bE - JEETHTTERX SN 4 S 5 fi - http:/iwww.hep.edu.cn
MBERIE 100120 http://www.hep.com.cn

)] R il ARED S5 A PR ] [ 11T http://www.landraco.com
H A 787mmx 1092mm 1/16 http:/www.landraco.com.cn
Bl 5k 30 fE k20154510 A% 1R
OB 410 T CEm Yk 2015 410 HER 1 REIRI
W52 010-58581118 FOM 9800 ¢ '

AAS AR, EI0T, DU R A, R e S R T A MR
MR 1RBUAE
Y B S 43102-00



NONLINEAR PHYSICAL SCIENCE
R EMIBRR



NONLINEAR PHYSICAL SCIENCE

Nonlinear Physical Science focuses on recent advances of fundamental theories and
principles, analytical and symbolic approaches, as well as computational techniques
in nonlinear physical science and nonlinear mathematics with engineering applica-
tions.

Topics of interest in Nonlinear Physical Science include but are not limited to:

- New findings and discoveries in nonlinear physics and mathematics

- Nonlinearity, complexity and mathematical structures in nonlinear physics

- Nonlinear phenomena and observations in nature and engineering

- Computational methods and theories in complex systems

- Lie group analysis, new theories and principles in mathematical modeling

- Stability, bifurcation, chaos and fractals in physical science and engineering

- Nonlinear chemical and biological physics

- Discontinuity, synchronization and natural complexity in the physical sciences

SERIES EDITORS

Albert C. J. Luo Nail H. Ibragimov

Department of Mechanical and Industrial Department of Mathematics and Science
Engineering Blekinge Institute of Technology
Southern Illinois University Edwardsville S$-371 79 Karlskrona, Sweden

IL 62026-1805, USA Email: nib@bth.se

Email: aluo@siue.edu

Valentin Afraimovich

San Luis Potosi University
IICO-UASLP, Av. Karakorum 1470
Lomas 4a Seccion, San Luis Potosi
SLP 78210, Mexico

Email: valentin@cactus.iico.uaslp.mx

INTERNATIONAL ADVISORY BOARD

Ping Ao Jan Awrejcewicz
Eugene Benilov Eshel Ben-Jacob
Maurice Courbage Marian Gidea

James A. Glazier Shijun Liao

Jose Antonio Tenreiro Machado Nikolai A. Magnitskii
Josep J. Masdemont Dmitry E. Pelinovsky
Sergey Prants Vietor L Shrira

Jian Qiao Sun Abdql-MajidWazwaz

Pei Yu



To our beloved families



Preface

The main novelty of this book is the consideration of chaos as an input for dif-
ferential and hybrid equations. More precisely, we insert chaos on the right-hand
side of the equations and investigate the results of perturbation. Moreover, we
investigate many possible consequences of the input—output analysis in systems
with many compartments. This is what makes our book on chaos unique among all
others.

Let us give some arguments toward the importance of the input—output analysis
of chaos for both theory and applications:

1. In the theory of dynamical systems, a large number of results use the input—
output analysis. For example, there are many theorems that can be loosely
formulated as follows: if a perturbation is periodic (bounded, almost periodic),
then there is a unique periodic (bounded, almost periodic) solution. Generally
speaking, our results can be formulated in the following way: if a perturbation is
chaotic, then there exists a chaos in the set of solutions. Thus, one can say that
our main proposal is to return investigation of chaos into the mainstream of
classical differential/difference equations theory and, consequently, a huge
number of rigorous mathematical methods, numerical instruments, and appli-
cations that rely on the input—output analysis will be involved for the investi-
gation of chaotic processes.

2. Despite the fact that many distinguished specialists in the chaos theory and
mathematics have been involved in the investigation, there are still many
challenging problems related to the origin of the chaos theory. For instance, we
do not have a rigorously approved chaos in Lorenz systems, Duffing equations,
and other systems. Moreover, there is no universal method to detect chaos in
multidimensional systems. Hopefully, the input—output analysis will give new
opportunities for the analyses of the basic models and help to unify the
knowledge of chaos. We believe that the exploitation of the mechanism in the
considered models can give mathematical clarity there.

vii



viii Preface

3. The input—output analysis can become a strong instrument in applications to
real-world problems through the modeling of chaos expansion. We hope that
unpredictability of weather, economical unpredictability, and irregularity as a
global phenomenon will be reflected in mathematical investigations more com-
prehensively through this machinery. This is true not only for atmospheric or
economic processes, but also for any large systems in biology, neural networks,
and computer sciences. Utilization of the input—output analysis in cryptography
and deciphering may also give effective results. The input—output analysis is very
popular, for instance, in mechanics, chemistry, biology, cryptography, etc.
Consequently, one can suppose that what we have suggested has to be realized
for real-world problems of various natures.

4. We describe the expansion of chaos on the basis of the input—output mechanism
using the concept of morphogenesis to emphasize that the expansion keeps the
geometrical properties of chaos. Furthermore, it is not surprising that the repli-
cation of chaos, introduced in the book, relates to concepts of science with broad
applications: self-organization, synergetics, chaos-order relations, thermo-
dynamics, biological patterns.

The book is attractive in the mathematical sense, since we have introduced
rigorous description of chaos for systems with continuous time for the first time.
This may give a push for the functional analysis of chaos to involve the operator
theory results, etc. Hopefully, our approach will give a basis for deeper compre-
hension and the possibility to unite different appearances of chaos. In this frame-
work, we also hope that the results can be developed for partial differential
equations, integro-differential equations, functional differential equations, evolution
systems, etc.

A part of the book is devoted to problems of economics. We have analyzed
chaos extension in economic models. Unpredictability in economics as sensitivity
in dynamical models is considered, and on that basis, global extension of unpre-
dictability is discussed.

The presence of chaos in neural networks is indispensable, and as applications of
our results, replication of chaos by neural networks is presented in a separate
chapter in this book.

We pay great attention to expansion of chaos through Lorenz models in mete-
orology. A special mathematical analysis has been made, since only dissipativeness
property of a system is used to prove the chaos presence in perturbed systems.

Entrainment of limit cycles by chaos is discovered numerically through specially
designed unidirectional coupling of two glow discharge-semiconductor systems.
The result demonstrates that the input—output machinery is working effectively for
partial differential equations. Chaotic control is through the external circuit equation
and governs the electrical potential on the boundary. The expandability of the
theory to collectives of glow discharge systems is discussed, and this increases the
potential of applications of the results.



Preface ix

The content of the book is a good background for applications in mechanics,
biology, molecular biology, physiology, pharmacology, secure communications,
neural networks, and other real-world problems involving complex behavior of
models. Since chaos is present everywhere, we can say that our results are appli-
cable in any field, where differential and difference equations are utilized as models.

The authors would like to express their gratitude to those who contributed to the
preparation of this book, Zhanar Akhmetova and Ismail Rafatov for the joined
results, the Series Editor Prof. Albert Luo and Editor of HEP Liping Wang for their
interest in the monograph and patience during the publication of the book.

Ankara, Turkey Marat Akhmet
Atlanta, GA, USA Mehmet Onur Fen
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Chapter 1
Introduction

The theory of dynamical systems starts with H. Poincaré, who studied nonlinear
differential equations by introducing qualitative techniques to discuss the global
properties of solutions [1]. His discovery of the homoclinic orbits figures prominently
in the studies of chaotic dynamical systems. Poincaré first encountered the presence
of homoclinic orbits in the three-body problem of celestial mechanics [2]. A Poincaré
homoclinic orbit is an orbit of intersection of the stable and unstable manifolds of a
saddle periodic orbit. It is called structurally stable if the intersection is transverse,
and structurally unstable or a homoclinic tangency if the invariant manifolds are
tangent along the orbit [3]. In any neighborhood of a structurally stable Poincaré
homoclinic orbit, there exist nontrivial hyperbolic sets containing a countable number
of saddle periodic orbits and continuum of non-periodic Poisson stable orbits [3-5].
For this reason, the presence of a structurally stable Poincaré homoclinic orbit can
be considered as a criterion for the presence of complex dynamics [3].

The first mathematically rigorous definition of chaos is introduced by Li and Yorke
[6] for one-dimensional difference equations. According to [6], a continuous map F :
J — J, where J C R is an interval, exhibits chaos if: (i) For every natural number
p, there exists a p—periodic point of F in J; (ii) There is an uncountable set § C J
containing no periodic points such that for every si,s2 € § with 51 # 57 we have
lim supy_, o, | F¥(s1) — F¥(s2)| > 0 and lim infi o0 | F¥(s1) — F¥(s2)| = 0; (iii)
For every s € § and periodic point o € J we have lim sup;_, |Fk (s) — F"(a)' >
0. In the paper [6], it was proved that if a map on an interval has a point of period
three, then it is chaotic.

Generalizations of Li-Yorke chaos to high-dimensional difference equations were
provided in [7-10]. According to Marotto [10], if a repelling fixed point of a differen-
tiable map has an associated homoclinic orbit that is transversal in some sense, then
the map must exhibit chaotic behavior. More precisely, if a multidimensional differ-
entiable map has a snap-back repeller, then it is chaotic. In the paper [9], Marotto’s
Theorem was used to prove rigorously the existence of Li-Yorke chaos in a spa-
tiotemporal chaotic system. Furthermore, the notion of Li-Yorke sensitivity, which
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links the Li-Yorke chaos with the notion of sensitivity, was studied in [7], and gen-
eralizations of Li-Yorke chaos to mappings in Banach spaces and complete metric
spaces were considered in [8].

Another mathematical definition of chaos for discrete-time dynamics was intro-
duced by Devaney [1]. It is mentioned in [1] thatamap F : J — J, where J C Ris
an interval, has sensitive dependence on initial conditions if there exists § > 0 such
that for any x € J and any neighborhood N of x there exists y € J and a positive
integer k such that | Fk(x) — F¥( y)] > §. On the other hand, F is said to be topolog-
ically transitive if for any pair of open sets U, V' C J there exists a positive integer
k such that F¥(U) NV # @. According to Devaney, amap F : J — J is chaotic
on J if: (i) F has sensitive dependence on initial conditions; (ii) F is topologically
transitive; (iii) Periodic points of F are dense in J. In other words, a chaotic map
possesses three ingredients: unpredictability, indecomposability, and an element of
regularity.

Symbolic dynamics, whose earliest examples were constructed by Hadamard
[11] and Morse [12], is one of the oldest techniques for the study of chaos. Symbolic
dynamical systems are systems whose phase space consists of one-sided or two-sided
infinite sequences of symbols chosen from a finite alphabet. Such dynamics arises
in a variety of situations such as in horseshoe maps and the logistic map. The set
of allowed sequences is invariant under the shift map, which is the most important
ingredient in symbolic dynamics [1, 13—17]. Moreover, it is known that the symbolic
dynamics admits the chaos in the sense of both Devaney and Li-Yorke [1, 18-21].

The Smale Horseshoe map is first studied by Smale [22] and it is an example of
a diffeomorphism which is structurally stable and possesses a chaotic invariant set
[1, 15, 17]. The horseshoe arises whenever one has transverse homoclinic orbits, as in
the case of the Duffing equation [23]. People used the symbolic dynamics to discover
chaos, but we suppose that it can serve as an “embryo” for the morphogenesis of
chaos.

From the mathematical point of view, chaotic systems are characterized by local
instability and uniform boundedness of the trajectories. Since local instability of
a linear system implies unboundedness of its solutions, chaotic system should be
necessarily nonlinear [24]. Chaos in dynamical systems is commonly associated with
the notion of a strange attractor, which is an attractive limit set with a complicated
structure of orbit behavior. This term was introduced by Ruelle and Takens [25] in
the sense where the word strange means the limit set has a fractal structure [3]. The
dynamics of chaotic systems are sensitive to small perturbations of initial conditions.
This means that if we take two close but different points in the phase space and follow
their evolution, then we see that the two phase trajectories starting from these points
eventually diverge [1, 26]. The sensitive dependence on the initial condition is used
both to stabilize the chaotic behavior in periodic orbits and to direct trajectories to a
desired state [27].

It was Lorenz [28] who discovered that the dynamics of an infinite-dimensional
system being reduced to three-dimensional equation can be next analyzed in its
chaotic appearances by application of the simple unimodal one-dimensional map.
Smale [22] explained that the geometry of the horseshoe map is underneath of the
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Van der Pol equation’s complex dynamics which was investigated by Cartwright and
Littlewood [29] and later by Levinson [30]. Nowadays, the Smale horseshoes with its
chaotic dynamics is one of the basic instruments when one tries to recognize a chaos
in a process. Guckenheimer and Williams [31] gave a geometric description of the
flow of Lorenz attractor to show the structural stability of codimension 2. In addition
to this, it was found out that the topology of the Lorenz attractor is considerably
more complicated than the topology of the horseshoe [23]. Moreover, Levi [32]
used a geometric approach for a simplified version of the Van der pol equation to
show existence of horseshoes embedded within the Van der Pol map and how the
horseshoes fit in the phase plane.

It is natural zo discover a chaos [6, 10, 25, 28, 33-42] and proceed by producing
basic definitions and creating the theory. On the other hand, one can shape an irregular
process by inserting chaotic elements in a system which has regular dynamics (let
us say comprising an asymptotically stable equilibrium, a global attractor, etc.).
This approach to the problem also deserves consideration as it may allow for a
more rigorous treatment of the phenomenon, and helps develop new methods of
investigation. Our results are of this type.

In this book, we use the idea that chaos can be utilized as input in systems of
equations. To explain the input—output procedure realized in our book, let us introduce
examples of systems called as the base-system, the replicator, and the generator,
which will be intensively used in the manuscript. Consider the following system of
differential equations,

dz
== B(z). (1.1)

The system (1.1) is called the base-system. We assume that the system admits a
regular property. For example, there is a globally asymptotically stable equilibrium

of (1.1). Next we apply to the system a perturbation, 7 (¢), which will be called an
input and obtain the following system,

dy
= B(y)+1(1), (1.2)
which will be called as the replicator.

Suppose that the input / admits a certain property, let us say, it is a bounded
function. We assume then that there exists a unique solution, y(¢), of the last equation,
the replicator, with the same property of boundedness. This solution is considered
as an output. The process for obtaining the solution y(¢) of the replicator system
by applying perturbation I(¢) to the base-system (1.1) is called the input—output
mechanism, and sometimes we shall call it the machinery. 1t is known that for certain
base-systems, if the input is periodic, almost periodic, bounded, then there exists an
output, which is also periodic, almost periodic, bounded, respectively. In our book,
we consider inputs of the new nature: chaotic sets and chaotic functions. The motions
which are in the chaotic attractor of the Lorenz system considered altogether provide



