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“... the answer, my friend, is blowin’ in the wind ...”

Bob Dylan






Foreword
to the Second Edition

The treatment of turbulence, increasingly, draws both on modeling con-
cepts related to traditional Reynolds Averaging of the Navier—Stokes equa-
tion (RANS), and on the resolution of the unsteady three-dimensional large
and medium flow structures as in traditional Large-Eddy Simulation (LES).
Without a doubt, such combined methods carry very much power, espe-
cially for separated flow, vibration and noise, and will be very widespread
at least for the first half of this century. Also without a doubt, they are con-
ceptually more complex than either RANS or LES, appreciably increase the
burden on code developers and users, can evolve rapidly, and are classified
by some as “dangerous toys”. They often mingle numerical and modeling
errors. LES always did this, but this is probably more the case for the
newer methods. To add to the difficulties for users and for code writers,
the CFD field is competitive and a few components of the methods are kept
secret, either for industrial reasons, or for competitive advantage over other
suppliers of software (sometimes, it’s simply careless scientific writing).
For all these reasons the present treatise, in its second edition after
six years, is essential as well as unique. It is very ambitious, as it pro-
poses to analyze the full spectrum of current turbulence treatments, from
pure steady RANS to Direct Numerical Simulation (DNS), in a deep and
impartial manner. This makes it very helpful, especially for researchers
entering the field, who otherwise only have the optimistic and often incom-
plete accounts by the scientists who proposed each method (and a few books
summarizing European research programmes such as DESider). There is an
excellent balance between seeking a theoretical basis to predict the worth of
a method, and reporting on complete tests, which leave “no place to hide”
for the method’s weaknesses. Just like the first edition, this significant
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revision has references that are only months old. The supporting work is
considerable.

The authors are very active researchers and have experience organizing
knowledge, writing chapters and entire books in this field. The English is
almost flawless, which is rare with 400 pages. The organization, with four
levels of chapter, section and sub-sections, makes navigation very effective.

The authors’ fairness made them include approaches which, in my biased
opinion, will not stand the test of time. However, the reader does not need
to spend much time on them, and besides we learn from all mistakes, and
from pondering ideas which are in some sense seductive, but are actually
flawed or just inefficient.

The authors have created numerous original figures to visualize the con-
cepts, notably sketches in real space and in wave space, and also obtained
figures from many leading researchers. Their reproduction is very good, as
is the typesetting and equations, and in general the book is a pleasure to
hold. Thus, equations are the focus, correctly since they enter the codes
and contain the validity of the method; but physical intuition is also a
major theme of the book. This is also appropriate, since our treatment
of turbulence is still so reliant on good approximations, as opposed to ex-
act results. It is essential for users of turbulence treatments to build their
awareness of the internal physics of their solutions, and of the level of vali-
dation of the method used, depending on the problem. A slight limitation
is that compressibility and other added complications such as combustion
and atmospheric physics are not emphasized at all. The non-linearity of
the incompressible Navier-Stokes equations is creating enough difficulty
and fascination through turbulence.

The authors are to be commended for a very substantial contribution
to science and engineering.

Philippe R. Spalart,
Boeing Commercial Airplanes, Seattle,
March 2012.



Foreword
to the First Edition

Turbulence modeling is a complex subject and methods developed to deal
with it are numerous and diverse. Many schools of thought exist and com-
munication and understanding among them is often lacking. Comparisons
may be odious but they need to be made and explored if a scientific disci-
pline is to progress. This is why Multiscale and Multiresolution Approaches
in Turbulence is so timely. It brings together many topics not found in one
place before. A number have appeared only in very recent research papers
and here grace the pages of a book for the first time. The proximity invites
comparisons and suggests a greater unification of turbulence methodol-
ogy than is at first apparent. The subject of the work is modeling, but
the dual themes, expressed in the title, are multiscale and multiresolution
approaches. These words conjure up fundamental and computational con-
cepts, and, indeed, the text presents both in an integrated way. Multiscale
and multiresolution methods have attracted enormous recent interest in a
variety of scientific disciplines, and they seem to provide the ideal frame-
work for organizing much, if not all, contemporary turbulence research.
The treatment begins in Chapter 1 with a brief introduction to tur-
bulence ideas, including randomness, coherent structures, turbulent length
and time scales, the Kolmogorov energy cascade, and transfers of energy be-
tween scales. In Chapter 2, the enormous cost of direct numerical solution of
the Navier—Stokes equations is used to motivate the practical need for mod-
eling. This amounts to approximating the effects of unrepresented scales
and the basic strategies are described next, namely, Reynolds-Averaged
Numerical Simulation (RANS) and Large-Eddy Simulation (LES), and are
followed by a discussion of multilevel methods. Chapter 3 deals with statis-
tical multiscale concepts and various RANS models are presented, including



x Multiscale and Multiresolution Approaches in Turbulence

eddy viscosity and Reynolds stress models. Chapter 4 is concerned with
multiscale subgrid models and self-adaptivity in LES. Fundamental ideas
are introduced, along with the Germano identity, dynamic models, self-
similarity, and Variational Multiscale (VMS) methods. Chapter 5 presents
structured multiscale subgrid models for LES based on the estimation of
small scales. Various reconstruction techniques are described, including
deconvolution, multifractal, and multigrid, in addition to zonal multi-
grid/multidomain methods. Unsteady turbulence simulations on self-
adaptive grids are discussed in Chapter 6, covering dynamic multilevel and
adaptive wavelet methods, and DNS and LES with Adaptive Mesh Re-
finement (AMR). Global hybrid RANS/LES approaches are presented in
Chapter 7, including unsteady statistical modeling, blending, and Detached
Eddy Simulation (DES). The theoretical basis of zonal RANS/LES meth-
ods commences Chapter 8 and is followed by a discussion of inlet data
generation and turbulence reconstruction techniques.

This text is a very important addition to the literature on turbulence. It
provides an excellent introduction to many areas of contemporary research
and it systematically organizes many seemingly disparate approaches within
its dual themes of multiscale and multiresolution methodology. Researchers
will find it useful as a guide to the strengths and weaknesses of current tech-
nology, a classification system within which new developments will likely
fit, and a hierarchy for locating methods to compare with. Student and
expert alike will benefit greatly by reading it from cover to cover, and will
also find it a reference work of lasting value.

Thomas J.R. Hughes,
University of Texas, Austin,
November 2005.
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