

时代教育・国外高校优秀教材精选

西尔斯物理学

下册 (英文版·原书第 10 版) Sears and Zemansky's University Physics

机械工业出版社

机械工业出版社(北京市百万庄大街 22 号 邮政编码 100037) 责任编辑: 刘小慧 封面设计: 鞠 杨 责任印制: 施 红北京铭成印刷有限公司印刷·新华书店北京发行所发行 2004年1月第1版第2次印刷 787mm×1092mm 1/16·82 印张·4 插页·2028 千字定价: 80.00元(上、下册) 凡购本书,如有缺页、倒页、脱页,由本社发行部调换本社购书热线电话(010)68993821、88379646 封面无防伪标均为盗版

MECHANICS

CHAPTER 1 Units, Physical Quantities, and Vectors 1

- 1-1 Introduction 1
- 1-2 The Nature of Physics 1
- 1-3 Idealized Models 3
- 1-4 Standards and Units 3
- 1-5 Unit Consistency and Conversions 6
- 1-6 Uncertainty and Significant Figures 7
- 1-7 Estimates and Orders of Magnitude 9
- 1-8 Vectors and Vector Addition 10
- 1-9 Components of Vectors 13
- 1-10 Unit Vectors 17
- 1-11 Products of Vectors 18

Summary/Key Terms 23

Questions/Exercises/Problems 24

CHAPTER 2 Motion Along a Straight Line 31

- 2-1 Introduction 31
- 2-2 Displacement, Time, and Average Velocity 31
- 2-3 Instantaneous Velocity 34
- 2-4 Average and Instantaneous Acceleration 37
- 2-5 Motion with Constant Acceleration 41
- 2-6 Freely Falling Bodies 46
- *2-7 Velocity and Position by Integration 49

Summary/Key Terms 51

Questions/Exercises/Problems 52

CHAPTER 3 Motion in Two or Three Dimensions 61

- 3-1 Introduction 61
- 3-2 Position and Velocity Vectors 61
- 3-3 The Acceleration Vector 64
- 3-4 Projectile Motion 68
- 3-5 Motion in a Circle 76

3-6 Relative Velocity 78 Summary/Key Terms 82 Questions/Exercises/Problems 84

CHAPTER 4 Newton's Laws of Motion 92

- 4-1 Introduction 92
- 4-2 Force and Interactions 93
- 4-3 Newton's First Law 95
- 4-4 Newton's Second Law 99
- 4-5 Mass and Weight 104
- 4-6 Newton's Third Law 107
- 4-7 Using Newton's Laws 110
- 4-8 Free-Body Diagrams Visualized 113

Summary/Key Terms 114

Questions/Exercises/Problems 114

CHAPTER 5 Applications of Newton's Laws 120

- 5-1 Introduction 120
- 5-2 Using Newton's First Law: Particles in Equilibrium 120
- 5-3 Using Newton's Second Law: Dynamics of Particles 125
- 5-4 Frictional Forces 132
- 5-5 Dynamics of Circular Motion 139
- *5-6 The Fundamental Forces of Nature 145
- 5-7 Projectile Motion with Air Resistance: A Case Study in Computer Analysis 146

Summary/Key Terms 149

Questions/Exercises/Problems 149

CHAPTER 6 Work and Kinetic Energy 164

- 6-1 Introduction 164
- 6-2 Work 164
- 6-3 Work and Kinetic Energy 168
- 6-4 Work and Energy with Varying Forces 174

6-5 Power 179

6-6 Automotive Power: A Case Study in Energy Relations 181

Summary/Key Terms 184

Questions/Exercises/Problems 185

CHAPTER 7 Potential Energy and Energy Conservation 194

- 7-1 Introduction 194
- 7-2 Gravitational Potential Energy 194
- 7-3 Elastic Potential Energy 204
- 7-4 Conservative and Nonconservative Forces 209
- 7-5 Force and Potential Energy 213
- 7-6 Energy Diagrams 216

Summary/Key Terms 218

Questions/Exercises/Problems 218

CHAPTER 8 Momentum, Impulse, and Collisions 227

- 8-1 Introduction 227
- 8-2 Momentum and Impulse 227
- 8-3 Conservation of Momentum 232
- 8-4 Inelastic Collisions 238
- 8-5 Elastic Collisions 241
- 8-6 Center of Mass 246
- *8-7 Rocket Propulsion 250
- 8-8 The Neutrino: A Case Study in Modern Physics 253 Summary/Key Terms 256

Questions/Exercises/Problems 257

CHAPTER 9 Rotation of Rigid Bodies 268

- 9-1 Introduction 268
- 9-2 Angular Velocity and Acceleration 268
- 9-3 Rotation with Constant Angular Acceleration 272
- 9-4 Relating Linear and Angular Kinematics 274
- 9-5 Energy in Rotational Motion 276
- 9-6 Parallel-Axis Theorem 281
- *9-7 Moment of Inertia Calculations 282

Summary/Key Terms 285

Questions/Exercises/Problems 286

CHAPTER 10 Dynamics of Rotational Motion 294

- 10-1 Introduction 294
- 10-2 Torque 294
- 10-3 Torque and Angular Acceleration for a Rigid Body 297
- 10-4 Rigid-Body Rotation about a Moving Axis 301
- 10-5 Work and Power in Rotational Motion 307
- 10-6 Angular Momentum 309
- 10-7 Conservation of Angular Momentum 311
- 10-8 Gyroscopes and Precession 314

Summary/Key Terms 317

Questions/Exercises/Problems 318

CHAPTER 11 Equilibrium and Elasticity 329

- 11-1 Introduction 329
- 11-2 Conditions for Equilibrium 329
- 11-3 Center of Gravity 330
- 11-4 Solving Rigid-Body Equilibrium Problems 333
- 11-5 Stress, Strain, and Elastic Moduli 337
- 11-6 Bulk Stress and Strain 341
- 11-7 Shear Stress and Strain 343
- 11-8 Elasticity and Plasticity 344

Summary/Key Terms 345

Questions/Exercises/Problems 346

CHAPTER 12 Gravitation 358

- 12-1 Introduction 358
- 12-2 Newton's Law of Gravitation 358
- 12-3 Weight 362
- 12-4 Gravitational Potential Energy 364
- 12-5 The Motion of Satellites 367
- 12-6 The Motion of Planets 370
- *12-7 Spherical Mass Distributions 373
- *12-8 Apparent Weight and the Earth's Rotation 377
- 12-9 Black Holes: A Case Study in Modern Physics 379

Summary/Key Terms 383

CONTENTS

CHAPTER 13 Periodic Motion 392

- 13-1 Introduction 392
- 13-2 The Causes of Oscillation 392
- 13-3 Simple Harmonic Motion 394
- 13-4 Energy in Simple Harmonic Motion 400
- 13-5 Applications of Simple Harmonic Motion 404
- 13-6 The Simple Pendulum 407
- 13-7 The Physical Pendulum 409
- 13-8 Damped Oscillations 411
- 13-9 Forced Oscillations, Resonance, and Chaos 413

Summary/Key Terms 416

Questions/Exercises/Problems 418

CHAPTER 14 Fluid Mechanics 427

- 14-1 Introduction 427
- 14-2 Density 427
- 14-3 Pressure in a Fluid 428
- 14-4 Buoyancy 432
- 14-5 Surface Tension 434
- 14-6 Fluid Flow 438
- 14-7 Bernoulli's Equation 440
- 14-8 Turbulence 444
- *14-9 Viscosity 446

Summary/Key Terms 448

Questions/Exercises/Problems 449

THERMODYNAMICS

CHAPTER 15 Temperature and Heat 460

- 15-1 Introduction 460
- 15-2 Temperature and Thermal Equilibrium 460
- 15-3 Thermometers and Temperature Scales 462
- 15-4 Gas Thermometers and the Kelvin Scale 463
- 15-5 Thermal Expansion 465
- 15-6 Quantity of Heat 470
- 15-7 Calorimetry and Phase Changes 473
- 15-8 Mechanisms of Heat Transfer 478
- 15-9 Integrated Circuits: A Case Study in Heat Transfer 485

Summary/Key Terms 487

Questions/Exercises/Problems 489

CHAPTER 16 Thermal Properties of Matter 499

- 16-1 Introduction 499
- 16-2 Equations of State 499
- 16-3 Molecular Properties of Matter 505
- 16-4 Kinetic-Molecular Model of an Ideal Gas 507
- 16-5 Heat Capacities 513
- *16-6 Molecular Speeds 517
 - 16-7 Phases of Matter 520
- Summary/Key Terms 523

Questions/Exercises/Problems 524

CHAPTER 17 The First Law of Thermodynamics 533

- 17-1 Introduction 533
- 17-2 Thermodynamic Systems 533
- 17-3 Work Done During Volume Changes 534
- 17-4 Paths Between Thermodynamic States 537
- 17-5 Internal Energy and the First Law of Thermodynamics 539
- 17-6 Kinds of Thermodynamic Processes 543
- 17-7 Internal Energy of an Ideal Gas 545
- 17-8 Heat Capacities of an Ideal Gas 546
- 17-9 Adiabatic Processes for an Ideal Gas 549

Summary/Key Terms 551

Questions/Exercises/Problems 552

CHAPTER 18 The Second Law of Thermodynamics 559

- 18-1 Introduction 559
- 18-2 Directions of Thermodynamic Processes 559
- 18-3 Heat Engines 560
- 18-4 Internal-Combustion Engines 563
- 18-5 Refrigerators 565
- 18-6 The Second Law of Thermodynamics 567
- 18-7 The Carnot Cycle 569
- *18-8 The Kelvin Temperature Scale 574
- *18-9 Entropy 574
- *18-10 Microscopic Interpretation of Entropy 579
- 18-11 Energy Resources: A Case Study in Thermodynamics 582

Summary/Key Terms 585

WAVES/ACOUSTICS

CHARTER 19 Mechanical Waves 593

- 19-1 Introduction 593
- 19-2 Types of Mechanical Waves 593
- 19-3 Periodic Waves 595
- 19-4 Mathematical Description of a Wave 596
- 19-5 Speed of a Transverse Wave 602
- 19-6 Speed of a Longitudinal Wave 606
- 19-7 Sound Waves in Gases 609
- 19-8 Energy in Wave Motion 610

Summary/Key Terms 613

Questions/Exercises/Problems 614

CHAPTER 20 Wave Interference and Normal Modes 620

- 20-1 Introduction 620
- 20-2 Boundary Conditions for a String and the Principle of Superposition 620
- 20-3 Standing Waves on a String 622
- 20-4 Normal Modes of a String 627
- 20-5 Longitudinal Standing Waves and Normal Modes 631
- 20-6 Interference of Waves 636
- 20-7 Resonance 637

Summary/Key Terms 640

Questions/Exercises/Problems 641

CHAPTER 21 Sound and Hearing 646

- 21-1 Introduction 646
- 21-2 Sound Waves 646
- 21-3 Sound Intensity 650
- 21-4 Beats 654
- 21-5 The Doppler Effect 656
- *21-6 Shock Waves 661

Summary/Key Terms 664

Questions/Exercises/Problems 664

ELECTROMAGNETISM

CHAPTER 22 Electric Charge and Electric Field 669

- 22-1 Introduction 669
- 22-2 Electric Charge 669
- 22-3 Electric Charge and the Structure of Matter 671
- 22-4 Conductors, Insulators, and Induced Charges 672
- 22-5 Coulomb's Law 674
- 22-6 Electric Field and Electric Forces 679
- 22-7 Electric-Field Calculations 683
- 22-8 Electric Field Lines 689
- 22-9 Electric Dipoles 690

Summary/Key Terms 694

Questions/Exercises/Problems 695

CHAPTER 23 Gauss's Law 704

- 23-1 Introduction 704
- 23-2 Electric Charge and Electric Flux 704
- 23-3 Calculating Electric Flux 707
- 23-4 Gauss's Law 711
- 23-5 Applications of Gauss's Law 714
- 23-6 Charges of Conductors 719

Summary/Key Terms 723

Questions/Exercises/Problems 724

CHAPTER 24 Electric Potential 731

- 24-1 Introduction 731
- 24-2 Electric Potential Energy 731
- 24-3 Electric Potential 737
- 24-4 Calculating Electric Potential 743
- 24-5 Equipotential Surfaces 746
- 24-6 Potential Gradient 749
- 24-7 The Cathode-Ray Tube 751
- 24-8 Calculating Potentials Due to Charged Conductors: A Case Study in Computer Analysis 754

Summary/Key Terms 759

CHAPTER 25 Capacitance and Dielectrics 771

- 25-1 Introduction 771
- 25-2 Capacitors and Capacitance 772
- 25-3 Capacitors in Series and Parallel 776
- 25-4 Energy Storage in Capacitors and Electric-Field Energy 779
- 25-5 Dielectrics 782
- *25-6 Molecular Model of Induced Charge 787
- *25-7 Gauss's Law in Dielectrics 789

Summary/Key Terms 790

Questions/Exercises/Problems 791

CHAPTER 26 Current, Resistance, and Electromotive Force 799

- 26-1 Introduction 799
- 26-2 Current 799
- 26-3 Resistivity 803
- 26-4 Resistance 805
- 26-5 Electromotive Force and Circuits 809
- *26-6 Energy and Power in Electric Circuits 815
- *26-7 Theory of Metallic Conduction 819
- *26-8 Physiological Effects of Currents 821

Summary/Key Terms 823

Questions/Exercises/Problems 824

CHAPTER 27 Direct-Current Circuits 832

- 27-1 Introduction 832
- 27-2 Resistors in Series and Parallel 832
- 27-3 Kirchhoff's Rules 837
- 27-4 Electrical Measuring Instruments 842
- 27-5 Resistance-Capacitance Circuits 846
- 27-6 Power Distribution Systems: A Case Study in Circuit Analysis 850

Summary/Key Terms 853

Questions/Exercises/Problems 854

CHAPTER 28 Magnetic Field and Magnetic Forces 865

- 28-1 Introduction 865
- 28-2 Magnetism 865

- 28-3 Magnetic Field 867
- 28-4 Magnetic Field Lines and Magnetic Flux 870

VII

- 28-5 Motion of Charged Particles in a Magnetic Field 873
- 28-6 Applications of Motion of Charged Particles 877
- 28-7 Magnetic Force on a Current-Carrying Conductor 880
- 28-8 Force and Torque on a Current Loop 883
- *28-9 The Direct-Current Motor 888
- *28-10 The Hall Effect 890

Summary/Key Terms 892

Questions/Exercises/Problems 893

CHAPTER 29 Sources of Magnetic Field 903

- 29-1 Introduction 903
- 29-2 Magnetic Field of a Moving Charge 903
- 29-3 Magnetic Field of a Current Element 906
- 29-4 Magnetic Field of a Straight Current-Carrying Conductor 908
- 29-5 Force between Parallel Conductors 911
- 29-6 Magnetic Field of a Circular Current Loop 913
- 29-7 Ampere's Law 915
- 29-8 Applications of Ampere's Law 918
- *29-9 Magnetic Materials 922
- 29-10 Displacement Current 927

Summary/Key Terms 930

Questions/Exercises/Problems 932

CHAPTER 30 Electromagnetic Induction 941

- 30-1 Introduction 941
- 30-2 Induction Experiments 941
- 30-3 Faraday's Law 943
- 30-4 Lenz's Law 950
- 30-5 Motional Electromotive Force 951
- 30-6 Induced Electric Fields 954
- *30-7 Eddy Currents 956
- 30-8 Maxwell's Equations 957
- *30-9 Superconductivity: A Case Study in Magnetic Properties 959

Summary/Key Terms 962

GIARTIES Inductance 971

								0.5	
3	- 1	 ni	ro	d	LICI	10	n	97	1

- 31-2 Mutual Inductance 971
- 31-3 Self-Inductance and Inductors 974
- 31-4 Magnetic-Field Energy 977
- 31-5 The R-L Circuit 979
- 31-6 The *L-C* Circuit 982
- 31-7 The L-R-C Series Circuit 987

Summary/Key Terms 989

Ouestions/Exercises/Problems 990

CHAPTER 32 Alternating Current 997

- 32-1 Introduction 997
- 32-2 Phasors and Alternating Currents 997
- 32-3 Resistance and Reactance 999
- 32-4 The L-R-C Series Circuit 1004
- 32-5 Power in Alternating-Current Circuits 1008
- 32-6 Resonance in Alternating-Current Circuits 1011
- 32-7 Transformers 1014

Summary/Key Terms 1017

Questions/Exercises/Problems 1019

CHAPTER 33 Electromagnetic Waves 1025

- 33-1 Introduction 1025
- 33-2 Maxwell's Equations and Electromagnetic Waves 1025
- 33-3 Plane Electromagnetic Waves and the Speed of Light 1028
- 33-4 Sinusoidal Electromagnetic Waves 1033
- 33-5 Energy and Momentum in Electromagnetic Waves 1035
- *33-6 Electromagnetic Waves in Matter 1040
- 33-7 Standing Electromagnetic Waves 1042
- 33-8 The Electromagnetic Spectrum 1044
- *33-9 Radiation from an Antenna 1045

Summary/Key Terms 1047

Ouestions/Exercises/Problems 1049

OPTICS

CHAPTER 34 The Nature and Propagation of Light 1053

- 34-1 Introduction 1053
- 34-2 The Nature of Light 1053
- 34-3 Reflection and Refraction 1055
- 34-4 Total Internal Reflection 1060
- *34-5 Dispersion 1063
 - 34-6 Polarization 1064
- *34-7 Scattering of Light 1072
- 34-8 Huygens' Principle 1073

Summary/Key Terms 1076

Questions/Exercises/Problems 1078

CHAPTER 35 Geometric Optics 1085

- 35-1 Introduction 1085
- 35-2 Reflection and Refraction at a Plance Surface 1085
- 35-3 Reflection at a Spherical Surface 1088
- 35-4 Graphical Methods for Mirrors 1095
- 35-5 Refraction at a Spherical Surface 1097
- 35-6 Thin Lenses 1101
- 35-7 Graphical Methods for Lenses 1105

Summary/Key Terms 1110

Questions/Exercises/Problems 1111

CHAPTER 36 Optical Instruments 1118

- 36-1 Introduction 1118
- 36-2 Cameras and Projectors 1118
- 36-3 The Eye 1123
- 36-4 The Magnifier 1126
- 36-5 The Microscope 1127
- 36-6 Telescopes 1129
- *36-7 Lens Aberrations 1131

Summary/Key Terms 1133

CONTENTS

CHAPTER 37 Interference 1138

- 37-1 Introduction 1138
- 37-2 Interference and Coherent Sources 1138
- 37-3 Two-Source Interference of Light 1142
- 37-4 Intensity in Interference Patterns 1145
- 37-5 Interference in Thin Films 1149
- 37-6 The Michelson Interferometer 1154
- *37-7 The Photon: A Case Study in Quantum Physics 1156

Summary/Key Terms 1158

Questions/Exercises/Problems 1159

CHAPTER 38 Diffraction 1165

- 38-1 Introduction 1165
- 38-2 Fresnel and Fraunhofer Diffraction 1165
- 38-3 Diffraction from a Single Slit 1167
- 38-4 Intensity in the Single-Slit Pattern 1170
- 38-5 Multiple Slits 1173
- 38-6 The Diffraction Grating 1176
- 38-7 X-Ray Diffraction 1179
- 38-8 Circular Apertures and Resolving Power 1182
- 38-9 Holography 1185

Summary/Key Terms 1187

Questions/Exercises/Problems 1188

MODERN PHYSICS

CHAPTER 39 Relativity 1195

- 39-1 Introduction 1195
- 39-2 Invariance of Physical Laws 1195
- 39-3 Relativity of Simultaneity 1198
- 39-4 Relativity of Time Intervals 1200
- 39-5 Relativity of Length 1204
- 39-6 The Lorentz Transformations 1208
- *39-7 Spacetime Diagrams 1212
- *39-8 The Doppler Effect for Electromagnetic Waves 1213
- 39-9 Relativistic Momentum 1215

39-10 Relativistic Work and Energy 121739-11 Newtonian Mechanics and Relativity 1220

Summary/Key Terms 1222

Questions/Exercises/Problems 1224

Appendices 1231

IX

A The International System of Units 1231

B Useful Mathematical Relations 1233

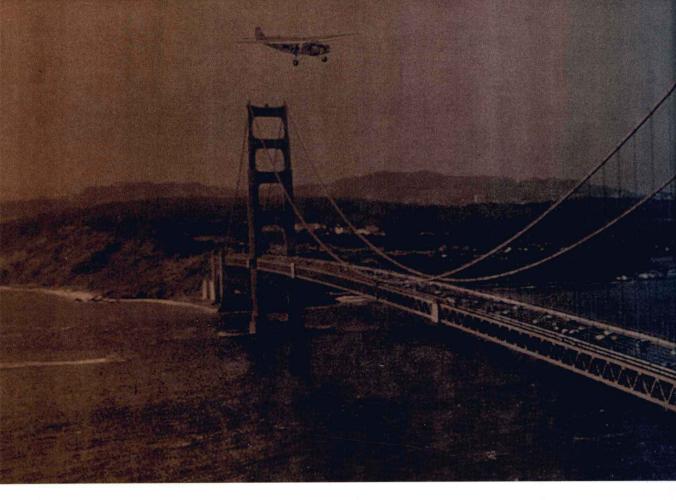
C The Greek Alphabet 1234

D Periodic Table of the Elements 1235

E Unit Conversion Factors 1236

F Numerical Constants 1237

Answers to Odd-Numbered Problems 1239


Credits 1254

Index 1256

封面设计/电脑制作:鞠杨

本书是一本在美国被普遍认可而广泛采用的大学物理教科书。内容包括力学、热学、 振动与波、电磁学、光学、狭义相对论等。本书的特色是注重概念、原理的讲解,非常注 意教给学生解答物理习题的方法: 除配有大量、合适的例题外, 还适时地总结列出利用原 理解答习题的思路和步骤,并在学生易发生误解和错误的地方及时地加注,本书还引用了 大量生动的生活实例,从实际出发,激发学生的学习兴趣,开阔学生的眼界。本书适用于 一般工科院校,特别是双语教学。

限中国大陆地区销售

地址: 北京市百万庄大街22号 联系电话: (010) 68326294

邮政编码: 100037 网址: http://www.cmpbook.com E-mail:online@cmpbook.com

定价: 80.00元(上、下册)