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PREFACE

Nearly every gallon (or liter!) of fuel, which is used in transport vehicles
(cars, trucks, trains, airplanes, etc.), is derived from oil that is extracted in
the crude state from oil wells and is then processed in an oil refinery to yield
the required transport fuel (gasoline, diesel, kerosene, etc.). The first task
in the refinery is to separate these useful fuels from the crude oil by the proc-
ess of distillation in which the components of the oil are separated on the basis
of their volatility. Of course, the components of crude oil, which are of
volatility too low to allow them to be used as fuels, are also separated in
the distillation process and can be either directly used (for example, as lubri-
cating or fuel oils) or can be chemically converted to more volatile materials.

In the distillation of crude oils, the separated components are hot and it is
important to use this heat in a series of heat exchangers (the “crude preheat
train”) in which heat is transferred from the separated streams into the
incoming crude oil. Unfortunately, these heat exchangers are subject to
fouling, which reduces the amount of heat they exchange and increases the
amount of extra heat that needs to be added (usually through an oil-fired
furnace immediately preceding the distillation column). Fouling the
exchangers also leads to higher pressure losses (and hence an increased
pumping power requirement) and, of course, the exchangers need to be
periodically cleaned. Altogether, fouling in the crude preheat train leads
to an enormous cost penalty (of the order of 1 billion dollars per annum
in the United States alone). '

The economic penalties associated with crude oil fouling led the UK
Engineering and Physical Sciences Research Council (EPSRC) to finance
a research program on crude oil fouling (CROF), which was started in
2006. This three-year program was carried out as a collaboration among
Imperial College (London), Bath Univemity, and Cambridge University.
Industrial companies representing about 70% of the world’s refining capacity
also participated through a special Working Party. The work comprised
experimental measurements of fouling, analytical modeling, and the devel-
opment of techniques for the analysis and characterization of crude oils and
deposits.

As a result of this research project, a step change has been possible in the
characterization and modeling of crude oil fouling and it is clearly important
to capture the impact of the work in a published form. Although a number
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of articles have been published on various aspects of the work, it was
considered important to create a unified and structured presentation of
the subject, and this is the objective of the present book.

Although the work described here is focused on crude oil fouling in
refinery heat exchangers, most of the experimental and modeling techniques
can be either directly applied or readily adapted to address to other types of
crude oil fouling. We believe that engineers and researchers involved with
waxing in pipelines, fouling of offshore equipment or other downstream
units will also find the science and applications contained in the book useful.

Though considerable progress has been made in the work summarized
here, it seems safe to predict that crude oil fouling will- remain an important
focus for research for many years to come!

G.F. Hewitt & F. Coletti
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Curvature of annulus (m)

Material-specific constant (-)

Various fouling model constants

Area (m®)

Pre-exponential factor for chemical reaction fouling (m* K ] ")
Pre-exponential factor for aging model (s )
Cross-sectional area for flow (m?)

Baffle cut (%) .

Biot number for fouling (-)

Phase volume fraction or species concentration (-)
Capillary number (-)

Discharge coefficient (-)

Friction factor (-)

Constant of integration (-)

Concentration in the bulk (kg m™)

Foulant concentration (kg m™°)

Concentration of precursors (kg m )

Specific heat capacity at constant pressure (J kg ' K ")
Concentration at the surface (kgm °)
Concentration of reactants (kg m ™)

Diameter (m)

Deposit diffusion coefficient (m”s ")

Hydraulic diameter of annulus (m)

[nner diameter (m)

Quter diameter (m)

Tube bundle diameter (m)

Shell inner diameter (m)

[nverse of diffusion coefficient (s m )
Asphaltene phase mole fraction (-)

Inner diameter of nozzle throat (m)

Inner diameter of tube connected to nozzle (m)
Direction of flow (-)

Activation energy ageing reaction (] mol ™)
Activation energy fouling reaction (J mol ')
Roughness (m)

Mathematical constant 2.71828 (-)

[nitial roughness value (m)

Final roughness value (m)

Free energy (k] mol ™)
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T T

D

Enthalpy (kJ mol ")

Channel height (m)

Heptane dilution value (-)

Precipitation enthalpy (k] mol ")

Distance between nozzle and deposit (m)
Distance between nozzle and substrate (m)
Heat transfer coefficient for ideal cross-flow (W m 2K ™)
Insolubility number (-)

Heat transfer coefhicient correction factor ()
Mass flux from the oil phase to fouling phase (kg m )
Equilibrium coefficient (-)

Equilibrium constant at precipitation temperature (—)
Order of reaction

Growth rate constant (s )

Removal rate constant (s )

Roughness dynamics model constant (—)
Thermal conductivity of deposit (W m 'K
Mass transfer coefficient (ms ™)

Rate constant of energy barfier (ms ')
Ageing rate (s ')

Length of element (m)

Effective length of tube connect to nozzle (m)
Tube length (m)

Central baffle spacing (m)

Inlet baffle spacing (m)

Outlet baffle spacing (m)

Tube pitch (m)

Number of moles present for each phase (mol)
Mass (kg)

Mass flow rate (kgs ')

Mass rate of deposition (kgs ')

Mass rate of fouling removal (kgs ')
Molecular weight (kg mol ") .
Characteristic value of mobility (s kg ")

Mass flux (kgm s ")

Measured gauging mass flow rate (kgs ')
Normal vector (-)

Total number of measurements (—)

Number of baffles (-)

Number of tube—side pass per shell (-)
Number of shells per unit (=)

Number of sealing strip pairs (-)

Total number of tubes (=)

Nusselt number (-)

Number of measurements (—)

Pressure (Pa)

Wetted perimeter (m)
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tﬂg!

bulk

< «EEC

Probability (-)

Peclet number (—)

Pressure drop between station i and j (Pa)
Prandd number (-)

Tube-side inner perimeter (m)

Pitch ratio (-)

Heat flux (W m™?)

Heat duty (W)

Radial coordinate (m)

Reaction rate (mol m s 1)
Dimensionless radial coordinate (-)
Density ratio (-)

Conductivity ratio (-)

Reaction i (-)

Viscosity ratio ()

Radius (m) -
Fouling resistance (m2 KW
Average fouling resistance (m> K W)
Universal gas constant (J kg ' mol ')
Reynolds number (-)

Reynolds number in the annulus (-)
Heat transfer surface (m?)

Entropy (k] mol 'K )

Solubility blending number ()
Temperature (K)

Bulk temperature (K)

Film temperature (K)

Modified film temperature (K)

Inlet flow temperature (K)

Precipitation temperature (K)

Reduced temperature ()

Surface temperature (K)

Initial surface temperature (K)

Surface temperature at time t (K)

Wall surface temperature (K)
Thermocouple temperature (K)
Thermocouple temperature (K)
Thermocouple temperature (K)
Temperature increase of element (K)
Time (s)

Time when # is half its maximum value (s)
Ageing time (s)

Overall heat transfer coeficient (W m 2K ™)
Velocity vector (-)

Mean fluid velocity in the tube (ms )
Average mean velocity in the bulk (m s~ h
Volume (m?)
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14 Volumetric flow rate (m> h™")

Va Molar volumes of asphaltenes in the asphaltene phase (m® mol ™)

Vi Volume of deposit (m”)

Vi Molar volumes of asphaltenes in the liquid phase (m® mol ")

V; Volume of channel (m?)

v Velocity (m s

w Width of nozzle rim (m)

w Power (W)

X4, Fraction of non-associated molecules (-)

* Horizontal coordinate (-)

x Simulated value

& Measured value

X, Distance expanded by element (m)

¥ Youth variable (-)

Yo Initial value of youth variable (-)

z Axial coordinate (m)

2 Vertical coordinate (-) .
GREEK

« Local heat transfer coefficient (W m 2K ')

o Angle of nozzle entry (°)

Qg Heat transfer coefficient for ideal cross—flow (W m > K™)

a? Tube—side heat transfer coefficient in clean conditions (W m > K_l)

4] Linear expansion coefficient (K_l)

[ Constant in Ebert and Panchal model (-)

B8 Thermocapillarity term (K™

y Suppression parameter (m* K N~ '] ")

¥ Local shear rate (s )

o Thickness of deposit (m)

04 Average solubility parameters in the asphaltene phase (Pa'’%)

or Average solubility parameters in the liquid phase (Pa'"?)

€ Temperature percentage residuals (-)

4 Data filtering procedure parameter (%)

7 Dimensionless function ()

Nmech Mechanical efficiency (-)

(0 Non-dimensional parameter that depends on Lx (-)

0 Characteristic formation time of polyaromatic structure in fouling layer (s)

0 Fractional surface coverage (-)

O Tube pitch angle (°)

A Thermal conductivity (W m ' K )

A Length of nozzle entry (m)

A° Thermal conductivity for freshly deposit material (W m ' K )

A= The maximum value of thermal conductivity (W m ' K ')

Thermal conductivity of foulant layer (W m ' K ™)
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dqutmﬁst

Dynamic viscosity (Pas)

Viscosity of fresh foulant material (Pa s)

Kinematic viscosity (St)

Structure parameter (-)

Density (kgm ")

Molar density in Section 5.2 (mol m )

Interfacial tension between oil phase and asphaltene phase (N m ™)
Measurement variance (K)

Surface shear stress (Pa)

Surface shear stress along the arc of inner annulus (Pa)

Characteristic value of chemical potential (kg m”s ™)

Fouling rate decrease by conversion of tarry layer to coke (m”* K W' s
Fouling deposition term (m° K W~ 's ")

Fouling removal term (m> K W' s ™)

Fouling rate decrease by mass transfer of tars to the bulk fluid (m> K W' s )
Heat balance closure parameter (%}

Weight fraction for component i (=)

Model domain (-)
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SUBSCRIPTS

Initial
Bulk
Cold

Conversion to coke

Deposit
Fouling, film

Hot

Inner, i-th component, interface
Inlet .
Fouling layer

Pass

number

Outer
Outlet
Precursor
Shell-side

Tube-side

Total

Tar layer
Wall
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SUPERSCRIPTS

<

Initial state of deposit

o Final state of deposit

*

Asymptotic value

m  Reaction order for reactant one

n  Reaction order for reactant two

n  Fluid parameter for aging model

l Reaction order for precursor
ABBREVIATIONS

2D Two-dimensional

3D Three-dimensional

AFM Atomic force microscopy .

ATR Attenuated total reflection

CDU Crude distillation unit

CFD Computational fluid dynamics

CG Coarse grained

C-H Cahn—Hilhard

(9311 Colloidal instability index

CIT Coil Inlet Temperature

CLSM  Confocal laser scanning microscopy

COT Coil Outlet Temperature

Ccv Control valve

DFT Density functional theory

DIM Diffuse interface method

DNS Direct numerical simulation

DPD Dissipative particle dynamics

EOS Equation of State )

ETS Emissions Trading Scheme

FDG Fluid dynamic gauging

FTIR Fourier transform infrared spectroscopy

HEN Heat exchanger network

HEX Heat exchanger

HiPOR High Pressure Oil Rig

HTRI Heat Transfer Research Incorporated

LES Large eddy simulation

LLE Liquid-liquid equilibria

LMTD  Logarithmic mean temperature difference

LVDT  Linear variable displacement transducer

N-S Navier—Stokes

NRV Nonreturn valve

PHT Pre heat train
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RANS
SAFT
SARA
SEC
SEM
TGA
UV-F
vdw
VGO

VOF

Reynolds-averaged Navier—Stokes
Statistical associating fluid theory
Saturate, Aromatic, Resin and Asphaltene
Size-exclusion chromatography
Scanning electron microscopy
Thermogravimetric analysis
Ultraviolet fluorescence

Van der Waals

Virgin gas oil

Vapor-liquid equilibria
Vapor-liquid-liquid equilibria
Volume of fluid

X-ray diffraction
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