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Preface

We have attempted in this book to provide a leisurely introduction to
the representation theory of groups. But why should this subject
interest you?

Representation theory is concerned with the ways of writing a group
as a group of matrices. Not only is the theory beautiful in its own right,
but it also provides one of the keys to a proper understanding of finite
groups. For example, it is often vital to have a concrete description of a
particular group; this is achieved by finding a representation of the
group as a group of matrices. Moreover, by studying the different
representations of the group, it is possible to prove results which lie
outside the framework of representation theory. One simple example: all
groups of order p? (where p is a prime number) are abelian; this can be
shown quickly using only group theory, but it is also a consequence of
basic results about representations. More generally, all groups of order
P°q® (p and q primes) are soluble; this again is a statement purely about
groups, but the best proof, due to Burnside, is an outstanding example
of the use of representation theory. In fact, the range of applications of
the theory extends far beyond the boundaries of pure mathematics, and
includes theoretical physics and chemistry — we describe one such
application in the last chapter.

The book is suitable for students who have taken first undergraduate
courses involving group theory and linear algebra. We have included two
preliminary chapters which cover the necessary background material.
The basic theory of representations is developed in Chapters 3-23, and
our methods concentrate upon the use of modules; although this accords
with the more modern style of algebra, in several instances our proofs
differ from .those found in other textbooks. The main resuits are elegant
and surprising, but at first sight they sometimes have an air of mystery
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viii Representations and characters of groups

about them; we have chosen the approach which we believe to be the
most transparent.

We also emphasize the practical aspects of the subject, and the text is
illustrated with a wealth of examples. A feature of the book is the wide
variety of groups which we investigate in detail. By the end of Chapter
28, we have presented the character tables of all groups of order less
than 32, of all p-groups of order at most p%, and of all the simple
groups of order less than 1000.

Every chapter is accompanied by a set of Exercises, and the solutions
to all of these are provided at the end of the book.

We would like to thank Dr Hans Liebeck for his careful reading of
our manuscript and the many helpful suggestions which he made.

Preface to Second Edition
In this second edition, we have included two new chapters; one
(Chapter 28) deals with the character tables of an infinite series of groups,
and the other (Chapter 29) covers aspects of the representation theory of
permutation groups. We have also added a considerable amount of new
material to Chapters 20, 23 and 30, and made minor amendments else-
where.
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1
Groups and homomorphisms

This book is devoted to the study of an aspect of group theory, so we
begin with a résumé of facts about groups, most of which you should
know already. In addition, we introduce several examples, such as
dihedral groups and symmetric groups, which we shall use extensively
to illustrate the later theory. An elementary course on abstract algebra
would normally cover all the material in the chapter, and any book on
basic group theory will supply you with further details. One or two
results which we shall use only infrequently are demoted to the
exercises at the end of the chapter — you can refer to the solutions if
necessary.

Groups

A group consists of a set G, together with a rule for combining any
two elements g, A of G to form another element of G, written gh; this
rule must satisfy the following axioms:

(1) forall g A kin G,
(gh)k = g(hk);
(2) there exists an element e in G such that for all g in G,
eg=ge=g;
(3) for all g in G, there exists an element g~! in G such that
gg'l=g'g=e

We refer to the rule for combining elements of G as the product
operation on G.



2 Representations and characters of groups

Axiom (1) states that the product operation is associative; the
element e in axiom (2) is an identity element of G; and g~! is an
inverse of g in axiom (3).

It is elementary to see that G has just one identity element, and that
every g in G has just one inverse. Usually we write 1, rather than e,
for the identity element of G.

The product of an element g with itself, gg, is written g?; similarly
g =g%g, g2=(g"? and so on. Also, g’ =1.

If the number of elements in G is finite, then we call G a finite
group; the number of elements in G is called the order of G, and is
written |G].

1.1 Examples

(1) Let n be a positive integer, and denote by C the set of all complex
numbers. The set of nth roots of unity in C, with the usual multi-
plication of complex numbers, is a group of order n. It is written as
C, and is called the cyclic group of order n. If a = ¥/, then

C.={l,ad,...,a""},
and " = 1.
(2) The set Z of all integers, under addition, is a group.

(3) Let n be an integer with n =3, and consider the rotation and
reflection symmetries of a regular n-sided polygon.

| \
|

Qe

\ /
/
N\ - P

There are n rotation symmetries: these are po, p1, ..., pn—1 Where p;
is the (clockwise) rotation about the centre O through an angle 2xk/n.
There are also n reflection symmetries: these are reflections in the n
lines passing through O and a corner or the mid-point of a side of the
polygon.

These 2n rotations and reflections form a group under the product
operation of composition (that is, for two symmetries f and g, the
product fg means ‘first do f, then do g’). This group is called the
dihedral group of order 2n, and is written D,,.

Let A be a corner of the polygon. Write b for the reflection in the



Groups and homomorphisms 3

line through O and A, and write a for the rotation p;. Then the n
rotations are

l,a,d,...,a""!

(where 1 denotes the identity, which leaves the polygon fixed); and the
n reflections are

b, ab, d’b, . .., a" 'b.

Thus all elements of D,, are products of powers of a and b — that is,
Dy, is generated by a and b.
Check that

"=1,=land b'ab=a"".

These relations determine the product of any two elements of the
group. For example, we have ba’ =a /b (using the relation ba =
a~'b), and hence

(a'b)(@’b) = a'ba’b = a'a/bb = a' .
We summarize all this in the presentation
Dyp=(abd=1,0P=1b"ab=a")

(4) For n a positive integer, the set of all permutations of
{1,2,...,n}, under the product operation of composition, is a group.
It is called the symmetric group of degree n, and is written S,. The
order of S, is n!.

(5) Let F be ecither R (the set of real numbers) or C (the set of
complex numbers). The set of all invertible #n X »n matrices with entries
in F, under matrix multiplication, forms a group. This group is called
the general linear group of degree n over F, and is denoted by
GL(n, F). 1t is an infinite group. The identity of GL(n, F) is of course
the identity matrix, which we denote by I, or just I

A group G is said to be abelian if gh= hg for all g and h in G.
While C, and Z are abelian, most of the other examples given above
are non-abelian groups.

, Subgroups

Let G be a group. A subset H of G is said to be a subgroup if H is
itself a group under the product operation inherited from G. We use
the notation H < G to indicate that H is a subgroup of G.
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It is easy to see that a subset H of a group G is a subgroup if and
only if the following two conditions hold:

(1) 1€ H, and
(2) if h, ke H then hk' € H.

1.2 Examples
(1) For every group G, both {1} and G are subgroups of G.

(2) Let G be a group and g € G. The subset

(g) ={g" nez}
is a subgroup of G, called the cyclic subgroup generated by g If
g" = 1 for some n= 1, then (g) is finite. In this case, let r be the

least positive integer such that g” = 1; then r is equal to the number
of elements in (g) — indeed,

<g> = {19 8 ng S gr—l}'
We call r the order of the element g.
If G=(g) for some g€ G then we call G a cyclic group. The
groups C, and Z in Examples 1.1 are cyclic.
(3) Let G be a group and let a, b € G. Define H to be the subset of G

consisting of all elements which are products of powers of a and b —
that is, all elements of the form

a'bia b2, | girp/n
for some n, where ij, jy € Z for 1 <k<n. Then H is a subgroup of
G; we call H the subgroup generated by a and b, and write
H = (a, b).

Given any finite set S of elements of G, we can similarly define (S),
the subgroup of G generated by S. .

This construction gives a powerful method of finding new groups as
subgroups of given groups, such as general linear or symmetric groups.
We illustrate the construction in the next example, and again in
Example 1.5 below.

(4) Let G=GL(2,C), the group of invertible 2 X 2 matrices with
entries in C, and let

(b (2 1)



Groups and homomorphisms 5

Put H = (4, B), the subgroup of G generated by 4 and B. Check that
A=1,A=B,B'4B=4"".

Using the third relation, we see that every element of H has the form
A'B/ for some integers i,j; and using the first two relations, we can
take 0<i=<3 and 0 <, =<1 Hence H has at most eight elements.
Since the matrices

AB (0<i<30<j<1)

are all distinct, in fact |H| = 8.

The group H is called the quaternion group of order 8, and is
written Og. The above three relations determine the product of any two
elements of O, so we have the presentation

Qs=(A4,B: 4" =1, 4 = B, B'AB = 47").

(5) A transposition in the symmetric group S, is a permutation which
interchanges two of the numbers 1,2, ..., » and fixes the other n — 2
numbers. Every permutation g in S, can be expressed as a product of
transpositions. It can be shown that either all such expressions for g
have an even number of transpositions, or they all have an odd number
of transpositions; we call g an even or an odd permutation, accord-
ingly. The subset

A, ={g € S,: g is an even permutation}

is a subgroup of §,, called the alternating group of degree n.

Direct products

We describe a construction which produces a new group from given
ones.
Let G and H be groups, and consider

GXH={(g h:geGand he€ H}.
Define a product operation on G X H by
(& hXg', h') = (gg', hh')

for all g, g’ € G and all h, &' € H. With this product operation, G X H
is a group, called the direct product of G and H.
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More generally, if G),..., G, are groups, then the direct product
G] X ... X G, is

{(g1, .-, &) g€Gforl<isr}
with product operation defined by

(g15---,8)8.--,8)=(g181,.- ., &8

If all the groups G; are finite, then G, X ... X G, is also finite, of
order |Gy}. .. |G,

1.3 Example
The group C, X...X C, (r factors) has order 2" and all its non-
identity elements have order 2.

Functions

A function from one set G to another set H is a rule which assigns a
unique element of H to each element of G. In this book, we generally
apply functions on the right — that is, the image of g under a function
9 is written as g9, not as 3g. We often indicate that 9 is a function
from G to H by the notation $: G — H. By an expression 3: g — h,
where g € G and h € H, we mean that A = g9.

A function 9: G — H is invertible if there is a function ¢: H— G
such that for all g€ G, h€ H,

(g9)¢ = g and (h¢)3 = h.

Then ¢ is called the inverse of 8, and is written as $'. A function 9
from G to H is invertible if and only if it is both injective (that is,
819 = g9 for g1, g2 € G implies that g, = g,) and surjective (that is,
for every h € H there exists g€ G such that g3 = h). An invertible
function is also called a bijection.

Homomorphisms

Given groups G and H, those functions from G to H which ‘preserve
the group structure’ — the so-called homomorphisms — are of particular
importance.

If G and H are groups, then a homomorphism from G to H is a
function $: G — H which satisfies

(2182)9 = (219)(g29) forall gy, g2 €G.
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An invertible homomorphism is called an isomorphism. If there is an
isomorphism 8 from G to H, then G and H are said to be isomorphic,
and we write G= H; also, 9! is an isomorphism from H to G, so
H=G.

The following example displays a technique which can often be used
to prove that certain functions are homomorphisms.

1.4 Example
Let G=Dy,={a b:a"=b =1, blab=a"'), and write the 2n
elements of G in the form a'b/ with 0<i<n-1,0<j<1. Let H
be any group, and suppose that H contains elements x and y which
satisfy
X" = y2 =A13 y—lxy — x—l.

We shall prove that the function 3: G — H defined by

9:d'b -x'y O<sisn-1,0<j<1)

is a homomorphism.
Suppose that 0 <r<n-1, 0ss=l, O0<tsn-1, 0su<l.
Then

adba'b = a'b

for some i, j with 0<i<n—1, 0= j=<1. Moreover, i and j are
determined by repeatedly using the relations

d=K=10b'lab=a".
Since we have x" = y2 =1, y~!xy = x~!, we can also deduce that
Xyxyt =x'yl.
Therefore,
(@B a'b)9 = (@'P) = x'y/ = x'y’x'y*
= (a'b*)8- (a'b")$,

and so 9 is a homomorphism.

We now demonstrate the technique of Example 1.4 in action.

L5 Example
Let G=Ss and let x, y be the following permutations in G:

x=(12345),y=2534.
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(Here we adopt the usual cycle notation — thus, (123 4 5) denotes the
permutation ] -2 —3 -4 —5— 1, and so on.) Check that

=y =1y xy=x"

Let H be the subgroup (x, y) of G. Using the above relations, we see
that

H={x'y:0<i<4,0<j=<1},

a group of order 10.
Now recall that

Do=(a,b:a=b=1b"ab=a"").
By Example 1.4, the function 9: Djg — H defined by
$:a' - x'y (0<i<4,0<j<1)

is a homomorphism. Since 9 is invertible, it is an isomorphism. Thus,
H= (x, y) =~ Dio.

Cosets

Let G be a group and let H be a subgroup of G. For x in G, the
subset

Hx = {hx: h€ H}

of G is called a right coset of H in G. The distinct right cosets of H
in G form a partition of G (that is, every element of G is in precisely
one of the cosets).

Suppose now that G is finite, and let Hx;,..., Hx, be all the
distinct right cosets of H in G. For all i, the function

h— hx; (he H)
is a bijection from H to Hx;, and so |Hx;| = |H|. Since
G=HxU...UHx, and
Hx; N Hx; is empty if i # j,
we deduce that
|G| = r|H]|.

In particular, we have
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1.6 Lagrange'’s Theorem
If G is a finite group and H is a subgroup of G, then |H| divides |G).

The number r of distinct right cosets of H in G is called the index
of Hin G, and is written as |G: H|. Thus

|G: H| = |Gl/|H|

when G is finite.

Normal subgroups

A subgroup N of a group G is said to be a normal subgroup of G
if g'Ng=N for all g€ G (where g"'Ng={g 'ng:ne N}); we
write N </ G to indicate that N is a normal subgroup of G.

Suppose that N <\ G and let G/N be the set of right cosets of N in
G. The importance of the condition g~!Ng = N (for. all g€ G) is that
it can be used to show that for all g, # € G, we have

{xy: x € Ng and y € Nh} = Ngh.
Hence we can define a product operation on G/N by
(Ng)(Nh) = Ngh forall g, h€ G.
This makes G/N into a group, called the factor group of G by N.

1.7 Examples
(1) For every group G, the sub-groups {1} and G are normal sub-
groups of G.

(2) For n=1, we have 4, <S,. If n=2 then there are just two right
cosets of A, in §,, namely

A, = {g € Sp: g even}, and
An(1 2) = {g € Sp: g odd}.
Thus |S,:4,| =2, and so S,/4, = C,.

B)Let G=Dg={ab:a*=b"=1, blab=a!) and let N=
(a®) = {1, @*}. Then N< G and

G/N = {N, Na, Nb, Nab}.

Since (Na)? = (Nb)? = (Nab)* = N, we see that G/N = C, X C,.
The subgroup (a) is also normal in G, but the subgroup H = (b) is
not normal in G, since b € H while a~'ba =a?b¢ H.



