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Preface

The investigation of the propagation channel is becoming more and more important in mod-
ern wireless communication. The demand for spectral efficiency motivates exploitation of
all channels that can possibly be used for communications. Nowadays, a common trend for
designing physical layer algorithms is to adapt the transceiving strategy, either by maximizing
the diversity gains or by utilizing the coherence of the channels to improve the signal-to-noise
power ratio.

Dr. Xiang Cheng and I have been working on topics relevant to channel characterization for
years. My major research has been focused on measurement-based stochastic channel mod-
eling using high-resolution estimates of the channel parameter from real measurement data.
Xiang’s work concentrates more on accurate yet easy-to-use channel modeling and simula-
tion based on geometry-based stochastic channel modeling approach. This book is intended
to cover both theoretical and experimental studies of channels by merging Xiang’s and my
own study results, obtained in the last decade. Most of the content has been published in jour-
nals and conference proceedings. New results that are still under review for publication are
also addressed in order to give a complete presentation of specific topics. In general, the book
can be viewed as a collection of the latest results in the field of theoretical and experimental
channel characterization. The contributions of Dr. Xiang Cheng and myself to this book are
equivalent.

There are already several books dedicated to channel investigations (Durgin 2003, Koivunen
2007, Parsons 2000, Saunders 1999, Pitzold 2002). Our book includes more of an introduction
to the methods used for the steps of channel characterization than these earlier studies, instead
of presenting only the final results. From this point of view, our book tells more complete
stories about channels, linking the methods applied in the different stages of channel analysis.
Furthermore, combining the description of theoretical and the empirical methods in one book
helps the reader conceive more clearly the merits of these methods. Another feature of the
book is that we also cover the methods used for extracting the parameters of generic models.
Normally, books address channels in one or two chapters and do not describe and comment on
the methods used for characterizing them. An example is the book by (Correia 2001). However,
since readers usually want to know how realistic the models are, it is important to give a clear
view of the underlying methods. Although some of the methods described in this book have
also been described in the literature for general cases (McLachlan and Krishnan 1997, Stoica
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and Moses 1997), we focus on the adaptation of methods applied for analyzing the propagation
channels.

This book can be used as a textbook for the courses dedicated for propagation channel
characterization, or for parts of courses that focus on wireless communication systems and
networks. We organize the book in such a way that the chapters are self-contained and can be
selected individually for specific topics. We start in Chapter 2 by introducing the phenomena
of propagation in wireless communication channels and the terminologies, and also the
parameters used to characterize their properties. Then, in Chapter 3, the generic parametric
models applied for representing multiple components in channel impulse responses are
introduced. For stochastic behaviors of channels represented by these model parameters,
statistical models are needed. We, therefore, review the approaches adopted in channel
characterization and modeling; from their theoretical aspects in Chapter 4 and by using
measurements in Chapter 5. The impacts of measurement equipment on the observations
and model accuracy are also discussed in Chapter 5. Chapters 6 and 7 introduce the
high-resolution channel-parameter estimation methods for extracting the parameters of the
generic channel models from measurement data, based on deterministic specular-path models
and statistical models, respectively. Chapter 8 elaborates the modeling procedure and key
techniques for constructing stochastic models based on parameter estimates. At the end of
the book, Chapter 9 illustrates specific channel models for different communication systems
as examples of the methods and techniques introduced in this book.
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1

Introduction

1.1 Book Objective

The characteristics of the propagation channel are of great importance for designing wireless
communication systems, analyzing communication qualities, and simulating the performance
of networks. However, in most books on wireless communications, propagation channels are
usually presented in only one or two chapters, which describe the fundamental characteris-
tics of channels —for example path loss, shadowing, and multipath fading — and present some
standard models. Since the procedures for measuring the wireless channels, the methodologies
adopted for parameter estimation, and the modeling approaches implemented are neglected in
these books, it is impossible for readers to understand how the models are established for spe-
cific scenarios. This also results in suspicions about the applicability of models, and questions
also arise about the appropriateness for implementation in channel simulations.

Furthermore, fast-growing wireless communication networks and services bring greater
demands for high spectral efficiency. Numerous techniques have been used, all essentially
exploiting the resources from propagation channels. For example, parallel spatial channels
are resolved and utilized by multiple-input, multiple-output (MIMO) techniques for diversity
or multiplexing. Similar MIMO techniques in other domains, such as in polarizations and in
wavefronts, have been developed. It is of no doubt that future wireless system design will be
more and more adaptive to the environments in which they are used. Network architecture
design is also becoming increasingly complicated in order to make the most use of specific
channels. For example, the techniques of distributed antennas, massive MIMO, relay, cooper-
ative transmission, and joint processing all require detailed knowledge of channels in both a
stochastic sense and in site-specific scenarios. Therefore, channel characterizations based both
on theoretical approaches and real measurements are going to become critical in the future.

Considering the multiple aspects of a channel, it is actually a “mission impossible™ to write
a book that is sufficiently comprehensive that every topic of channel studies is included. This
book is written with the aim of covering only some aspects of the propagation channel:

e the high-resolution approach of analyzing channels based on measurement data
e stochastic channel modeling either using empirical parameters or based on simulation of
scattering.

Propagation Channel Characterization, Parameter Estimation and Modelling for Wireless Communications, First Edition.
Xuefeng Yin and Xiang Cheng.
© 2016 John Wiley & Sons, Singapore Pte. Ltd. Published 2016 by John Wiley & Sons, Singapore Pte. Ltd.



2 Propagation Channels for Wireless Communications

The objectives of this book are threefold. First, the book provides the fundamentals of both
empirical measurement-based and theoretical-scattering-based channel modeling. The topics
covered are widely spread, touching on the fields of wideband channel measurements, model
parameter extraction, stochastic model generation, and theoretical channel modeling. Second,
the book provides some updated channel models, which can be used for practical simulations.
Engineers in the wireless communication industry can therefore use them to evaluate their sys-
tem performance. Thirdly, this book highlights ongoing trends, revealing some fresh research
results that might be interesting for researchers when designing new systems.

1.2 The Historical Context

1.2.1 Importance of Channel Characterization

The statistical characteristics of channels can significantly influence the design of wireless
communication systems. For example, the path-loss model, based on the measurements in
specific regions, can be used to determine the appropriate value of the separation between cells,
in order to keep the interference below a certain threshold. Shadowing models can be used to
determine the maximum and the minimum transmission power in order to avoid blindspots
in the coverage. Multipath fading models, which include the fading rate and fading-duration
characteristics, can be used to determine the packet length and the transmission rate. Delay
spread models can be used to evaluate the frequency selectivity of the environment, so as to
determine the coherence frequency bandwidth or the separation of the orthogonal channels in
the frequency domain. Doppler frequency spread models can be used to calculate the coherence
time of the channel, and therefore determine the cycle duration to renew the estimate of channel
coefficients. The models in the spatial domains, for example the cluster-based bidirectional
models, can be applied to determine the antenna beamwidth in beamforming applications,
or to calculate the degrees of freedom for channels with MIMO configurations. Stochastic
models themselves are based on extensive measurements in many environments categorized
into specific types, such as outdoor, indoor, urban/suburban, and so on; they are therefore valid
in similar environments.

The model parameters can be used to determine the many thresholds used in communication
systems. For example, for frequency hopping multiple access systems, the frequency offsets
due to the Doppler effect of the channel, and the timing problems due to the multipath arrivals
at different time instants, can cause a certain portion of the desired signal’s energy to appear
in spurious adjacent frequency bins; consequently the detection of the desired signal becomes
difficult [Joo et al. 2003], and the detection matrix may have erroneous entries [ Yegani and
McGillem 1993]. With the knowledge of the delay-Doppler frequency dispersion behavior of
channels in certain environments and scenarios, the threshold level of envelope detectors can be
appropriately selected. Furthermore. if the instantaneous knowledge of the channel dispersion
characteristics is available, the channel can be equalized accordingly.

1.2.2  Single-input, Single-output Channel Models

Channel investigation started at the end of the 1960s [Okumura et al. 1968]. At that time,
wireless systems were built for voice communications using frequency division multiple



