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Introduction

Background

By awarding Harry Markowitz, William Sharpe, and Merton Miller the 1990
Nobel Prize in Economics, the Nobel Prize Committee brought to worldwide
attention the fact that the previous forty years had seen the emergence of
a new scientific discipline, the “theory of finance.” This theory attempts to
understand how financial markets work, how to make them more efficient, and
how they should be regulated. It explains and enhances the important role
these markets play in capital allocation and risk reduction to facilitate eco-
nomic activity. Without losing its application to practical aspects of trading
and regulation, the theory of finance has become increasingly mathematical,
to the point that problems in finance are now driving research in mathematics.

Harry Markowitz's 1952 Ph.D. thesis Portfolio Selection laid the ground-
work for the mathematical theory of finance. Markowitz developed a notion
of mean return and covariances for common stocks that allowed him to quan-
tify the concept of “diversification” in a market. He showed how to compute
the mean return and variance for a given portfolio and argued that investors
should hold only those portfolios whose variance is minimal among all portfo-
lios with a given mean return. Although the language of finance now involves
stochastic {Itd) calculus, management of risk in a quantifiable manner is the
underlying theme of the modern theory and practice of quantitative finance.

In 1969, Robert Merton introduced stochastic calculus into the study of
finance. Merton was motivated by the desire to understand how prices are
set in financial markets, which is the classical economics question of “equi-
librium,” and in later papers he used the machinery of stochastic calculus to
begin investigation of this issue.

At the same time as Merton’s work and with Merton’s assistance, Fis-
cher Black and Myron Scholes were developing their celebrated option pricing
formula. This work won the 1997 Nobel Prize in Economics. It provided a
satisfying solution to an important practical problem, that of finding a fair
price for a European call option (i.e., the right to buy one share of a given
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stock at a specified price and time). In the period 1979-1983, Harrison, Kreps,
and Pliska used the general theory of continuous-time stochastic processes to
put the Black-Scholes option-pricing formula on a solid theoretical basis, and,
as a result, showed how to price numerous other “derivative” securities.

Many of the theoretical developments in finance have found immediate
application in financial markets. To understand how they are applied, we
digress for a moment on the role of financial institutions. A principal function
of a nation’s financial institutions is to act as a risk-reducing intermediary
among customers engaged in production. For example, the insurance industry
pools premiums of many customers and must pay off only the few who actually
incur losses. But risk arises in situations for which pooled-premium insurance
is unavailable. For instance, as a hedge against higher fuel costs, an airline
may want to buy a security whose value will rise if oil prices rise. But who
wants to sell such a security? The role of a financial institution is to design
such a security, determine a “fair” price for it, and sell it to airlines. The
security thus sold is usually “derivative” (i.e., its value is based on the value
of other, identified securities). “Fair” in this context means that the financial
institution earns just enough from selling the security to enable it to trade
in other securities whose relation with oil prices is such that, if oil prices do
indeed rise, the firm can pay off its increased obligation to the airlines. An
“efficient” market is one in which risk-hedging securities are widely available
at “fair” prices.

The Black-Scholes option pricing formula provided, for the first time, a
theoretical method of fairly pricing a risk-hedging security. If an investment
bank offers a derivative security at a price that is higher than “fair,” it may be
underbid. If it offers the security at less than the “fair” price, it runs the risk of
substantial loss. This makes the bank reluctant to offer many of the derivative
securities that would contribute to market efficiency. In particular, the bank
only wants to offer derivative securities whose “fair” price can be determined
in advance. Furthermore, if the bank sells such a security, it must then address
the hedging problem: how should it manage the risk associated with its new
position? The mathematical theory growing out of the Black-Scholes option
pricing formula provides solutions for both the pricing and hedging problems.
It thus has enabled the creation of a host of specialized derivative securities.
This theory is the subject of this text.

Relationship between Volumes I and II

Volume II treats the continuous-time theory of stochastic calculus within the
context of finance applications. The presentation of this theory is the raison
d’étre of this work. Volume II includes a self-contained treatment of the prob-
ability theory needed for stochastic calculus, including Brownian motion and
its properties.
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Volume I presents many of the same finance applications, but within the
simpler context of the discrete-time binomial model. It prepares the reader
for Volume II by treating several fundamental concepts, including martin-
gales, Markov processes, change of measure and risk-neutral pricing in this
less technical setting. However, Volume II has a self-contained treatment of
these topics, and strictly speaking, it is not necessary to read Volume I before
reading Volume II. It is helpful in that the difficult concepts of Volume II are
first seen in a simpler context in Volume I.

In the Carnegie Mellon Master’s program in Computational Finance, the
course based on Volume I is a prerequisite for the courses based on Volume
II. However, graduate students in computer science, finance, mathematics,
physics and statistics frequently take the courses based on Volume II without
first taking the course based on Volume L

The reader who begins with Volume II may use Volume I as a reference. As .
several concepts are presented in Volume II, reference is made to the analogous
concepts in Volume 1. The reader can at that point choose to read only Volume
I1 or to refer to Volume 1 for a discussion of the concept at hand in a more
transparent setting.

Summary of Volume I

Volume I presents the binomial asset pricing model. Although this model is
interesting in its own right, and is often the paradigm of practice, here it is
used primarily as a vehicle for introducing in a simple setting the concepts
needed for the continuous-time theory of Volume II.

Chapter 1, The Binomial No-Arbitrage Pricing Model presents the no-
arbitrage method of option pricing in a binomial model. The mathematics is
simple, but the profound concept of risk-neutral pricing introduced here is
not. Chapter 2, Probability Theory on Coin Toss Space, formalizes the results
of Chapter 1, using the notions of martingales and Markov processes. This
chapter culminates with the risk-neutral pricing formula for European deriva-
tive securities. The tools used to derive this formula are not reslly required for
the derivation in the binomial model, but we need these concepts in Volume II
and therefore develop them in the simpler discrete-time setting of Volume I.
Chapter 3, State Prices, discusses the change of measure associated with risk-
neutral pricing of European derivative securities, again as a warm-up exercise
for change of measure in continuous-time models. An interesting application
developed here is to solve the problem of optimal (in the sense of expected
utility maximization) investment in a binomial model. The ideas of Chapters
1 to 3 are essential to understanding the methodology of modern quantitative
finance. They are developed again in Chapters 4 and 5 of Volume II.

The remaining three chapters of Volume I treat more specialized con-
cepts. Chapter 4, American Derivative Securities, considers derivative secu-
rities whose owner can choose the exercise time. This topic is revisited in
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a continuous-time context in Chapter 8 of Volume II. Chapter 5, Random
Walk, explains the reflection principle for random walk. The analogous reflec-
tion principle for Brownian motion plays a prominent role in the derivation of
pricing formulas for exotic options in Chapter 7 of Volume II. Finally, Chap-
ter 6, Interest-Rate-Dependent Assets, considers models with random interest
rates, examining the difference between forward and futures prices and intro-
ducing the concept of a forward measure. Forward and futures prices reappear
at the end of Chapter 5 of Volume II. Forward measures for continuous-time
models are developed in Chapter 9 of Volume II and used to create forward
LIBOR models for interest rate movements in Chapter 10 of Volume II.

Summary of Volume II

Chapter 1, General Probability Theory, and Chapter 2, Information and Con-
ditioning, of Volume II lay the measure-theoretic foundation for probability
theory required for a treatment of continuous-time models. Chapter 1 presents
probability spaces, Lebesgue integrals, and change of measure. Independence,
conditional expectations, and properties of conditional expectations are intro-
duced in Chapter 2. These chapters are used extensively throughout the text,
but some readers, especially those with exposure to probability theory, may
choose to skip this material at the outset, referring to it as needed.

Chapter 3, Brownian Motion, introduces Brownian motion and its proper-
ties. The most important of these for stochastic calculus is quadratic variation,
presented in Section 3.4. All of this material is needed in order to proceed,
except Sections 3.6 and 3.7, which are used only in Chapter 7, Ezotic Options
and Chapter 8, Early Ezercise. ,

The core of Volume II is Chapter 4, Stochastic Calculus. Here the Itd
integral is constructed and Itd’s formula (called the It6-Doeblin formula in
this text) is developed. Several consequences of the It6-Doeblin formula are
worked out. One of these is the characterization of Brownian motion in terms
of its quadratic variation (Lévy’s theorem) and another is the Black-Scholes
equation for a European call price (called the Black-Scholes-Merton equation
in this text). The only material which the reader may omit is Section 4.7,
Brownian Bridge. This topic is included because of its importance in Monte
Carlo simulation, but it is not used elsewhere in the text.

Chapter 5, Risk-Neutral Pricing, states and proves Girsanov's Theorem,
which underlies change of measure. This permits a systematic treatment of
risk-neutral pricing and the Fundamental Theorems of Asset Pricing (Section
5.4). Section 5.5, Dividend-Paying Stocks, is not used elsewhere in the text.
Section 5.6, Forwards and Futures, appcars later in Section 9.4 and in some
exercises. ‘

Chapter 6, Connections with Partial Differential Equations, develops the
connection between stochastic calculus and partial differential equations. This
is used frequently in later chapters.
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With the exceptions noted above, the material in Chapters 1-6 is fun-
damental for quantitative finance is essential for reading the later chapters.
After Chapter 6, the reader has choices.

Chapter 7, Exotic Options, is not used in subsequent chapters, nor is Chap-
ter 8, Early Ezercise. Chapter 9, Change of Numéraire, plays an important
role in Section 10.4, Forward LIBOR model, but is not otherwise used. Chapter
10, Term Structure Models, and Chapter 11, Introduction to Jump Processes,
are not used elsewhere in the text.
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1

The Binomial No-Arbitrage Pricing Model

1.1 One-Period Binomial Model

The binomial asset-pricing model provides a powerful tool to understand ar-
bitrage pricing theory and probability. In this chapter, we introduce this tool
for the first purpose, and we take up the second in Chapter 2. In this section,
we consider the simplest binomial model, the one with only one period. This
is generalized to the more realistic multiperiod binomial model in the next
section.

For the general one-period model of Figure 1.1.1, we call the begmmng of
the period time zero and the end of the period time one. At time zero, we have
a stock whose price per share we denote by Sp, a positive quantity known at
time zero. At time one, the price per share of this stock will be one of two
positive values, which we denote S,(H) and $,(T), the H and T standing
for head and tail, respectively. Thus, we are imagining that a coin is tossed,
and the outcome of the coin toss determines the price at time one. We do not
assume this coin is fair (i.e., the probability of head need not be one-half).
We assume only that the probablhty of head, which we call p, is positive, and
the probability of tail, which is ¢ = 1 — p, is also positive.

S:1(H) = uSo
So ’

S$1(T) = dSo

Fig. 1.1.1. General one-period binomial model.
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The outcome of the coin toss, and hence the value which the stock price
will take at time one, is known at time one but not at time zero. We shall
refer to any quantity not known at time zero as random because it depends
on the random experiment of tossing a coin.

We introduce the two positive numbers

Si1(H) _ Su(T)

==/ = . 1.1.
u 50 d 5o (1.1.1)

We assume that d < u; if we instead had d > u, we may achieve d < u by
relabeling the sides of our coin. If d = u, the stock price at time one is not
really random and the model is uninteresting. We refer to u as the up factor
and d as the down factor. It is intuitively helpful to think of u as greater than
one and to think of d as less than one, and hence the names up factor and
down factor, but the mathematics we develop here does not require that these
inequalities hold. - .

We introduce also an interest rate r. One dollar invested in the money
market at time zero will yield 1+ r dollars at time one. Conversely, one dollar
borrowed from the money market at time zero will result in a debt of 1 + 7
at time one. In particular, the interest rate for borrowing is the same as the
interest rate for investing. It is almost always true that » > 0, and this is
the case to keep in mind. However, the mathematics we develop requires only
that r > —1.

An essential feature of an efficient market is that if a trading strategy can
turn nothing into something, then it must also run the risk of loss. Otherwise,
there would be an arbitrage. More specifically, we define arbitrage as a trading
strategy that begins with no money, has zero probability of losing money,
and has a positive probability of making money. A mathematical model that
admits arbitrage cannot be used for analysis. Wealth can be generated from
nothing in such a model, and the questions one would want the model to
illuminate are provided with paradoxical answers by the model. Real markets
sometimes exhibit arbitrage, but this is necessarily fleeting; as soon as someone
discovers it, trading takes places that removes it. :

In the one-period binomial model, to rule out arbitrage we must assume

0<d<l+r<u (1.1.2)

The inequality d > 0 follows from the positivity of the stock prices and was
already assumed. The two other inequalities in (1.1.2) follow from the absence
of arbitrage, as we now explain. If d > 1 + r, one could begin with zero wealth
and at.time zero borrow from the money market in order to buy stock. Even
in the worst case of a tail on the coin toss, the stock at time one will be worth
enough to pay off the money market debt and has a positive probability of
being worth strictly more since u > d > 1 + r. This provides an arbitrage.
On the other hand, if u € 1+ 7, one could sell the stock short and invest the
proceeds in the money market. Even in the best case for the stock, the cost of
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replacing it at time one will be less than or equal to the value of the money
market investment, and since d < u < 1 + 7, there is a positive probability
that the cost of replacing the stock will be strictly less than the value of the
money market investment. This again provides an arbitrage.

We have argued in the preceding paragraph that if there is to be no arbi-
trage in the market with the stock and the money market account, then we
must have (1.1.2). The converse of this is also true. If (1.1.2) holds, then there
is no arbitrage. See Exercise 1.1.

It is common to have d = 1—1‘, and this will be the case in many of our
examples. However, for the binomial asset-pricing model to make sense, we
only need to assume (1.1.2).

Of course, stock price movements are much more complicated than indi-
cated by the binomial asset-pricing model. We consider this simple model for
three reasons. First of all, within this model, the concept of arbitrage pric-
ing and its relation to risk-neutral pricing is clearly illuminated. Secondly,
the model is used in practice because, with a sufficient number of periods,
it provides a reasonably good, computationally tractable approximation to
continuous-time models. Finally, within the binomial asset-pricing model, we
can develop the theory of conditional expectations and martingales, which lies
at the heart of continuous-time models.

Let us now consider a European call option, which confers on its owner
the right but not the obligation to buy one share of the stock at time one for
the strike price K. The interesting case, which we shall assume here, is that
S1(T) < K < S81(H). If we get a tail on the toss, the option expires worthless.
If we get a head on the coin toss, the option can be erercised and yields a
profit of S1(H)— K. We summarize this situation by saying that the option at
time one is worth (S; — K')*, where the notation (---)* indicates that we take
the maximum of the expression in parentheses and zero. Here we follow the
usual custom in probability of omitting the argument of the random variable
S1. The fundamental question of option pricing is how much the option is
worth at time zero before we know whether the coin toss results in head or
tail.

The arbitrage pricing theory approach to the option-pricing problem is to
replicate the option by trading in the stock and money markets. We illustrate
this with an example, and then we return to the general one-period binomial
model.

Example 1.1.1. For the particular one-period model of Figure 1.1.2,let §(0) =
4,u=2d=}, and r = . Then S;(H) = 8 and S,(T).= 2. Suppose the
strike price of the European call option is K = 5. Suppose further that we
begin with an initial wealth Xy = 1.20 and buy Ag = 5 shares of stock at
time zero. Since stock costs 4 per share at time zero, we must use our initial
wealth Xy = 1.20 and borrow an additional 0.80 to do this. This leaves us
with a cash position Xy — 4¢Sp = —0.80 (i.e., a debt of 0.80 to the money
market). At time one, our cash position will be (1 + r)(Xy — 4pSp) = —
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S (H)=8

So

i
'S

$i(T) =2

Fig. 1.1.2. Particular one-period binomial model.

(i.e., we will have a debt of 1 to the money market). On the other hand, at
time one we will have stock valued at either 1S;(H) =4 or 351(T) = 1. In
particular, if the coin toss results in a head, the value of our portfolio of stock
and money market account at time one will be

X,(H) = 281(H) + (1+7)(Xo = B0So) =

if the coin toss results in a tail, the value of our portfolio of stock and money
market account at time one will be

X,(T) = 381(T) + 1+ 7)(Xo = 80S0) = 0.

In either case, the value of the portfolio agrees with the value of the option
at time one, which is either (S;(H) — 5)* = 3 or (S1(T) — 5)* = 0. We have
replicated the option by trading in the stock and money markets.

The initial wealth 1.20 needed to set up the replicating portfolio described
above is the no-arbitrage price of the option at time zero. If one could sell
the option for more than this, say, for 1.21, then the seller could invest the
excess 0.01 in the money market and use the remaining 1.20 to replicate the
option. At time one, the seller would be able to pay off the option, regardless
of how the coin tossing turned out, and still have the 0.0125 resulting from
the money market investment of the excess 0.01. This is an arbitrage because
the seller of the option needs no money initially, and without risk of loss has
0.0125 at time one. On the other hand, if one could buy the option above
for less than 1.20, say, for 1.19, then one should buy the option and set up
the reverse of the replicating trading strategy described above. In particular,
sell short one-half share of stock, which generates income 2. Use 1.19 to buy .
the option, put 0.80 in the money market, and in a separate money market
account put the remaining 0.01. At time one, if there is a head, one needs 4
to replace the half-share of stock. The option bought at time zero is worth
3, and the 0.80 invested in the money market at time zero has grown to 1.
At time one, if there is a tail, one needs 1 to replace the half-share of stock.



