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Phylogenomics



Preface

This book is intended to serve as an introduction to a new area in comparative
biology known as phylogenomics. Approximately 15 years ago, concurrent with
the rapid and efficient sequencing of full genomes from living organisms, Clare
Fraser and Jonathon Eisen coined the term “phylogenomics,” a combination of
phylogeny, which refers to the process whereby evolutionary trees are generated,
and genomics, which represents the endeavor of obtaining genome-level data
from organisms. Phylogenomics has developed into an important and compel-
ling discipline in its own right. We developed this book in response to the students
we have encountered over the last several years who are interested in applying
genomics to comparative biology, specifically to phylogenetic, evolutionary, and
population genetics problems.

Phylogenomics: A Primer is for advanced undergraduate students and graduate
students in molecular biology, comparative biology, evolution, genomics, biodi-
versity, and informatics. Depending on their educational training, students can
focus on the topics in the book that are of the most interest to them. Students who
do not have strong backgrounds in evolution or phylogenomics will find the chap-
ters that discuss evolutionary principles and the manipulation of phylogenomic-
level data particularly useful. Conversely, students who are adept in ecology,
taxonomy, and biodiversity will have the opportunity to learn about the evolution
of genes and populations at the phylogenomic level and become familiar with
applying phylogenomics to their genomics research.

We believe that there is no better way to understand the information that has been
obtained about genes and genomes from life on this planet than to place it into
context with the grand evolutionary experiment that has unfolded over the past
3.5 billion years. To this end, we have designed this book as a journey from the
basic principles on which organic life has evolved, to the role of burgeoning data-
bases in elucidating the function of proteins and organisms, and concluding with
an interpretation of linear sequence information in the framework of organismal
change.

Molecules are the currency of modern genomics and have an underlying linear
arrangement of their component parts; that is, proteins and DNA can be bro-
ken down into linear sequences of amino acids and nucleotides, respectively.
Chapters 1 and 2 present the essential principles underlying molecular biology
and describe classical techniques used to analyze molecular sequences, includ-
ing several high-throughput techniques that are known as “next generation”
approaches. Chapter 3 explores evolution at the population level and introduces
phylogenetic tree building. As a convenience, we make a simple demarcation
between the evolutionary studies that focus on populations (microevolution) and
those that focus on species relationships at higher-level systematic relationships
(macroevolution).

Chapters 4 through 7 discuss the storage and manipulation of genomics-level
data to enable the generation of the data sets that are used in phylogenomics.
These processes include accessing databases and web programs such as PubMed,
GenBank, and BLAST for downloading DNA and protein sequences; aligning lin-
ear sequences and producing matrices for evolutionary analysis; and assembling
and annotating genomes.

Chapters 8 through 11 focus on the construction of evolutionary trees. Various
approaches to phylogenetic analysis are presented, including distance, likeli-
hood, parsimony, resampling, and Bayesian inference. In addition, the phenom-
enon of incongruence in relation to tree building is described as are the methods
by which this problem is addressed.
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Chapters 12 through 15 focus on the application of modern phylogenomics at the
gene and population level. The transformation of population genetics by the use
of DNA sequence information, the detection of natural selection on genes derived
from genomic data, and the application of genome-level approaches to popula-
tion genetics is essential to the understanding of natural populations in an evolu-
tionary context.

The book concludes with a discussion of the basic applications of phylogenom-
ics in the context of modern genome research. Chapter 16 examines the use of
genome content to understand evolution. The role of phylogenomics in biodiver-
sity studies, specifically the construction of the tree of life, DNA barcoding, and
metagenomics, is explored in Chapter 17. The final chapter describes how func-
tional genomics can be applied in a phylogenomic context, specifically transcrip-
tion-based approaches and protein-protein interactions.

Working through the applications described in this book does not require an
extensive computer science background beyond basic skills such as using a ter-
minal or web browser. We have developed a set of Web Features that are linked to
specific methods discussed in the book and are designed to introduce students
to the websites used to obtain and analyze data. These features are designed to
be accessed via a laptop or desktop computer and most are Web-based. A few
stand-alone programs are referenced as well, all of which can be downloaded and
installed on either a Mac or PC.

Rob DeSalle
New York, New York

Jeffrey A. Rosenfeld
Newark, New Jersey

Student and Instructor Resources Websites

Accessible from www.garlandscience.com, the Student and Instructor Resources
websites provide learning and teaching tools created for Phylogenomics: A Primer.
The Student Resources Site is open to everyone and users have the option to reg-
ister in order to use book-marking and note-taking tools. The Instructor Resource
Site requires registration and access is available only to qualified instructors. To
access the Instructor Resource Site, please contact your local sales representative
or email science@garland.com.

For Students

Web Features

Web-based exercises designed to assist students in working with the programs
and databases used to analyze phylogenomic data.

For Instructors

Figures

The images from the book are available in two convenient formats: PowerPoint®
and JPEG, which have been optimized for display. The resources may be browsed
by individual chapter or a search engine. Figures are searchable by figure number,
figure name, or by keywords used in the figure legend from the book.

Resources available for other Garland Science titles can be accessed via the
Garland Science website.

PowerPoint is a registered trademark of Microsoft Corporation in the United States and/or other
countries.
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Why Phylogenomics

Matters

hylogenomics is a new way of looking at biological information. It refers to the

intersection of several important aspects of modern biology such as molecular
biology, systematics, population biology, evolutionary biology, computation, and
informatics, with genome-level information as the source for testing hypotheses
and for interpretation of data. Because the amount of information from genomes
is orders of magnitude greater than previously available, novel approaches and
new skills are needed by biologists to make sense of these data. In order to under-
stand the biological information in a phylogenomic context, we first need to
understand the nature of biological information and why and how we organize
it. Understanding the nuances of computing therefore becomes an integral part
of understanding phylogenomics. But we also need to have a good handle on the
important molecular and evolutionary questions facing modern biology in order
to formulate the right questions.

Phylogenomics and Bioinformatics

In 1976, the genome of the RNA virus MS2 (3569 nucleotides long) was sequenced
by RNA sequencing. The next year, the first complete genome sequence of
a DNA-based organism, ¢X174, was decoded. At 5386 nucleotides long, this
genome opened the door for sequencing other DNA-based genomes. It took two
decades to advance the technology enough that the whole genome of a living
organism could be sequenced. The first living organism to be sequenced was
Haemophilus influenzae (the bacterium that causes influenza) in 1996. In rapid
succession, several bacterial genomes and eukaryotic model organism genomes
were sequenced, including yeast (Saccharomyces), fruit fly (Drosophila), plant
(Arabidopsis), mouse (Mus musculus), and worm (Caenorhabditis elegans).

As DNA sequencing technology has improved, the number of DNA fragments
sequenced has risen. Recent advances in technology have resulted in an
explosion of information. The trend for DNA sequencing for the three decades
after genomes were first sequenced, compiled by the National Center for
Biotechnology Information, is shown in Figure 1.1. In the years 2005-2011,
advances in sequencing technology have reached what is called the “next
generation” (see Chapter 2). From 2005 onward, the upswing in the amount
of sequence generated by laboratories across the globe via next-generation
sequencing approaches appears linear even on a logarithmic scale. With novel
organisms being sequenced at extremely rapid rates, the onslaught of new
gene sequences and the need to annotate, systematize, and archive them are
now seen as a problem that is not solvable by simple comparative methods or
simple computational approaches. The realization that billions of base pairs of
sequence would soon be available to researchers studying cell biology, genetics,
developmental biology, biochemistry, and evolution pushed researchers to think
of the best ways to organize and interpret the data for making inferences about
the functional aspects of newly sequenced genes. The first steps to achieving
these goals were to use newly developed bioinformatics approaches.

CHAPTER
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Bioinformatics (Sidebar 1.1) is fundamentally the use of computational tools
to answer biological questions and manage biological data. This term is gener-
ally synonymous with the term “computational biology,” and the terms are used
interchangeably. In this book, we will utilize the term bioinformatics. Examples
of bioinformatics tasks include constructing phylogenetic matrices and build-
ing evolutionary trees, using microarray data to summarize the genes that are
expressed in specific tissues, assembling the human genome, and predicting the
three-dimensional fold of a protein. Bioinformatics is a wide field and its applica-
tions and needs are growing rapidly. While it was once considered a niche area
that was separate from “wet-lab” biology, bioinformatics is now central to almost
all biological investigations. Any time a biologist uses a computer to tabulate or
analyze data, he or she is essentially doing bioinformatics.

The importance of bioinformatics has increased greatly with the introduction of
technology that produces large amounts of data and the undertaking of large-
scale projects. Below we briefly discuss two specific examples of high-throughput
biology that have required a shift in the way we think about biological informa-
tion. These two areas of modern biology—microarrays and the Human Genome
Project—have given scientists the impetus to deal with large data sets in a bioin-
formatics context.

Sidebar 1.1. Origin of bioinformatics.

The origin of bioinformatics can be roughly traced to
the publication of What is Life?, a monograph by Erwin
Schrodinger, co-winner of the Nobel Prize in Physics in
1933. Schrodinger was one of the great physicists of the
early twentieth century, and in this monograph, he dis-
cusses biology from a physicist’s point of view. When the
essay was published in 1944, physics was regarded as a
mathematical science involved with quantum theory,
while biology was considered an observational science
with little need for mathematics. Schrodinger explained
that there were many quantitative aspects to biologi-
cal entities and that the proper understanding of these

attributes would require the use of quantitative tools
similar to those used by physicists. The ideas expressed
spread throughout the world of physics, and James
Watson and Francis Crick, who discovered the struc-
ture of DNA, trace their interest in biology to this work.
Physicists were also motivated to investigate biological
questions and applied their quantitative perspective
to the biological field. Because their approaches were
mathematical and computational, these aspects of phys-
ics were transferred to the study of biology to cope with
the large amount of data flooding the field.



PHYLOGENOMICS AND BIOINFORMATICS

A microarray is a simple concept with powerful applications

The basic science behind a microarray is very simple, but the applications are
very powerful. Its purpose is to determine the kinds and abundance of messenger
RNA (mRNA) in a cell. Prior to the development of microarrays, measurement
of mRNA levels was usually limited to a few genes at a time. Microarrays are dis-
cussed in more detail in Chapter 2, but a brief overview of the method is provided
here. A microarray analyzes cellular RNA to determine the expression level (that
is, how much mRNA is produced) for thousands of genes simultaneously. Single-
stranded DNA sequences (probes) are affixed to a slide in specific positions, and
the total RNA from a cell is extracted, labeled with a fluorescent dye, and hybrid-
ized with the DNA probes on the slide.

The objectives of microarray analysis include
» Determining where on the microarray the probes for various genes are located

» Determining the expression level of each gene from the fluorescence intensity
of the probed DNA

* Determining which genes are significantly expressed

* Determining whether genes belonging to a particular functional category are
overrepresented in the set of significantly expressed genes.

Microarrays are a fixture within biological laboratories devoted to diverse spe-
cialties, from bacterial genetics to cancer diagnostics. In order to effectively use
this technology, bioinformatics skills are needed. Even the most basic microarray
experiment involves a tremendous amount of bioinformatics. A large fraction of
the bioinformatics may not be visible to the end-user, but it is impossible to ignore
the impact of bioinformatics entirely.

The Human Genome Project was a watershed event in
DNA sequencing

The Human Genome Project was the largest and most expensive biological project
in history. It involved collaboration among genome centers around the world that
were involved in sequencing the 3 x 109 bases in the human genome. It required a
significant number and range of bioinformatics tools, many of which were specifi-
cally designed for this project. The bioinformatics tasks included

¢ Monitoring and organizing the data generated
 Efficient sharing of the data between genome centers
» Assembly of the sequence reads to compile the genome

e Annotation of the genome to determine the locations and functions of genes

Bioinformatics tools enable data analysis and identification
of patterns in biological experiments

An important task in bioinformatics is processing the large amounts of data gen-
erated in high-throughput biological experiments. This information needs to
be managed by computers so that it is accessible and understandable. As men-
tioned above, the human genome translates into a pattern of 3 billion letters of A,
T, G, and C. If this information was written out on paper in 12-point Times font,
it would be approximately the length of the complete Encyclopedia Britannica.
Trying to find specific genes or DNA sequences in this much information with-
out bioinformatics is like having to find a single specific word in all the volumes
of the Encyclopedia Britannica without keywords or alphabetized arrangement
of entries. Bioinformatics has produced tools that are used to sift through large
amounts of information to discover patterns and processes. Informatics tools

3



4 CHAPTER 1: Why Phylogenomics Matters

such as BLAST enable searches through the large number of DNA sequences
that currently exist in the public databases (see Chapter 4). Besides the human
genome, additional genetic sequence information has been collected from other
organisms. The set of all publicly available DNA sequences is stored in GenBank
and, as of April 2012, the size of the complete database was 471 gigabytes (471
GB = 471,000,000,000 bytes). The University of California at Santa Clara (UCSC)
genome browser is a very highly utilized database of annotations for the human
genome. It consists of 1.5 terabytes (1.5 TB = 1,500,000,000,000 bytes) of data.

The scope of the problems addressed by bioinformatics will continue to increase
in the next few years (Figure 1.1). Several large high-throughput projects (the
1000 Genomes Project and the 10K Animal Genomes project are two examples)
will increase the amount of sequence in the database by several orders of magni-
tude. The goal of the 1000 Genomes Project is to determine the complete genome
sequences of 2500 individuals from diverse ethnic groups across the world. At 3
GB per genome, itis expected that this project will produce many terabytes of data.
The 10K Animal Genomes project plans to produce the whole genome sequences
of over 10,000 animals. This project will generate over 60 TB of data.

The Rise of Phylogenomics

The term phylogenomics (Sidebar 1.2) was first coined by Jonathan Eisen and
Claire Fraser at The Institute for Genome Research (TIGR) at the turn of the cen-
tury. Phylogenomics is an updating of the term phylogenetics and refers to focus
on genome-level analysis. Whereas conventional phylogenetics is based upon
the analysis of a few genes, phylogenomics would investigate complete genomes
of data. At first, phylogenomics was applied to the functional annotation of
newly sequenced genomes. Table 1.1 (taken from Eisen) shows the comparative
approaches that can be used to assign function to a newly sequenced gene. At
the genome level for higher eukaryotes, this needs to be done tens of thousands

Sidebar 1.2. Where does the term phylogenomics come from?

To properly understand what phylogenomics is, we need
to understand the two major roots of the word: phylo
and genomic. The term is really a hybrid with Greek
origins and more modern twists. The first part of the
term, phylo, comes from the Greek root “phylon,” which
means group or tribe, which has been expanded into the
modern word “phylogeny,” or a diagram that represents
grouping. Modern-day phylogenies are, at their simplest
level, branching diagrams that represent the relatedness
of organisms. But, as we will see, phylogenies can also
carry information about the sequence of events that have
occurred over evolutionary time. The second part of the
term, genomics, comes from two subroots. The root word
“gene” was first coined in 1903 by Wilhelm Johannsen, a
Danish botanist, to refer to a unit of heredity. The suffix
“omics” has a more modern origin: it has been applied to
a number of root terms to signify an entirely new way of
doing biology. When this suffix is applied to a root word,
it usually means the exhaustive collection of informa-
tion for a particular biological level. For instance, tran-
scriptomics is the study of the entire array of transcripts

made by a cell. Proteomics is the study of the entire array
of proteins made by a cell. Similarly, genomics, a term
first used in 1987 when scientists began to discuss the
possibility of obtaining the DNA sequence of each base
in the human genome, is the study of the entire array of
DNA sequences contained in a cell. “Genome” studies
proper began in 1996, when the first whole genome of
a living organism (the bacterium Haemophilus influen-
zae) was produced by J. Craig Venter and his colleagues.
Genomics includes the following steps:

o Obtaining sequences from the genome of an
organism

* Assembly of those sequences into a single contigu-
ous genome sequence (if the organism has a single
chromosome) or sets of contiguous sequences (if the
organism has more than one chromosome)

¢ Identification of the regions of the raw sequence that
correspond to genes

¢ Annotation of the genes
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Table 1.1. Comparative approaches to assigning gene function.

Name Description of the approach Example
Highest hit The uncharacterized gene is assigned Tomb et al.,
the function (or frequently, the annotated 1997

function) of the gene that is identified as the
highest hit by a similarity search program.

Top hits Identify top 10+ hits for the uncharacterized | Blattner et al.,
gene. Depending on the degree of 1997
consensus of the functions of the top hits,
the query sequence is assigned a specific
function, a general activity with unknown
specificity, or no function.

Clusters of Genes are divided into groups of orthologs Tatusov et al.,
orthologous groups based on a cluster analysis of pairwise 1997
similarity scores between genes from
different species. Uncharacterized genes
are assigned the function of characterized
orthologs.

of times because the genomes of eukaryotes contain 10,000 to 30,000 genes. To
date over a dozen species of Drosophila have had their genomes sequenced. The
main reason for all of this fly sequencing was not because scientists were specifi-
cally interested in these other species, but rather because the sequences of these
species gave scientists better tools to understand the function of the genome of
Drosophila melanogaster, the model organism. In other words, these other spe-
cies were sequenced simply because they would help with the annotation of a
model organism genome. These kinds of approaches are called functional phylo-
genomics, because they attempt to get at the processes involved in the function
of gene products. As time progressed, scientists realized the power of reconstruct-
ing phylogenetic relationships by use of genome-level information. So after about
5 years of usage of the term with its original meaning, other aspects of the use of
genome-level sequences were assigned to the umbrella of phylogenomics. These
include using an evolutionary approach to understand the function of genes and
using whole genome sequences to interpret the relationships of organisms.

To give the student a sense of the power of a phylogenetic evolutionary approach
to genomics, we present two examples. The first example concerns understand-
ing the functional nature of protein products from genes (known as functional
phylogenomics) and the second concerns the use of whole genome sequences to
infer the pattern of relationships of organisms (known as pattern phylogenomics).

Functional phylogenomics employs common ancestry to infer
protein function

Phylogenomic analysis allows for a way to use common ancestry to infer the func-
tion of an unknown protein. Brown and Sjolander have used the example of G
protein coupled receptors to demonstrate how a phylogenetic approach can lead
to annotation of function in a large group of proteins that might seem unrelated in
the beginning. A branching diagram of protein sequences, derived from the opi-
oid/galanin/somatostatin gene family that allows for two important inferences
about assigning function to unknown proteins, is shown in Figure 1.2. Diamonds
represent fully annotated and well-understood proteins, and ovals represent
unannotated proteins. The structure of the tree allows researchers to focus on
three subtrees—the opioid, galanin, and somatostatin receptors—and to assign
a function for the unannotated proteins in the study. Thus unknown proteins can



