CLASSICAL THEORETICAL PHYSICS

Greiner

CLASSICAL MECHANICS

Systems of Particles and Hamiltonian Dynamics

经典力学

粒子系和哈密顿动力学

Springer

光界图学出版公司 www.wpcbj.com.cn

Walter Greiner

CLASSICAL MECHANICS

Systems of Particles and Hamiltonian Dynamics

Foreword by D. Allan Bromley

With 266 Figures

图书在版编目 (CIP) 数据

经典力学. 粒子系和哈密顿动力学: 英文/(德) 葛莱纳著.—北京: 世界图书出版公司北京公司, 2007.10 书名原文: Classical Mechanics: Systems of Particles and Hamiltonian Dynamics ISBN 978-7-5062-9158-3

I. 经… Ⅱ.葛… Ⅲ.经典力学—教材—英文 Ⅳ.031

中国版本图书馆CIP数据核字(2007)第153442号

书 名: Classical Mechanics: Systems of Particles and Hamiltonian Dynamics

作 者: W. Greiner

中 译 名: 经典力学: 粒子系和哈密顿动力学

责任编辑: 高蓉 刘慧

出版者: 世界图书出版公司北京公司

印刷者: 三河市国英印务有限公司

发 行: 世界图书出版公司北京公司(北京朝内大街 137 号 100010)

联系电话: 010-64015659,64038348

电子信箱: kjsk@vip.sina.com

开 本: 16 开

印 张: 35.75

版 次: 2008年1月第1次印刷

版权登记: 图字:01-2007-4608

书 号: 978-7-5062-9158-3/O·624 定 价: 95.00 元

世界图书出版公司北京公司已获得 Springer 授权在中国大陆独家重印发行

Walter Greiner
Institut für Theoretische Physik
Johann Wolfgang Goethe-Universität
Robert Mayer Strasse 10
Postfach 11 19 32
D-60054 Frankfurt am Main
Germany
greiner@th.physik.uni-frankfurt.de

Library of Congress Cataloging-in-Publication Data Greiner, Walter, 1935-

Classical mechanics: systems of particles and Hamiltonian dynamics/Walter Greiner.

p. cm.—(Classical theoretical physics) Includes bibliographical references and index. ISBN 0-387-95128-8 (softcover: alk. paper)

1. Mechanics, Analytic. I. Title II. Series.

1. Mechanics, Analytic. 1.

QA805.G675 2000

531—dc21

00-059584

ISBN 0-387-95128-8

Translated from the German Mechanik: Teil 2, by Walter Greiner, published by Verlag Harri Deutsch, Thun, Frankfurt am Main, Germany, © 1989.

© 2003 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

This reprint has been authorized by Springer-Verlag (Berlin/Heidelberg/New York) for sale in the People's Republic of China only and not for export therefrom.

987654321

SPIN 10778257

www.springer-ny.com

Springer-Verlag New York Berlin Heidelberg

A member of BertelsmannSpringer Science+Business Media GmbH

THEORETICAL PHYSICS

Greiner

Quantum Mechanics

An Introduction 3rd Edition

Greiner

Quantum Mechanics

Special Chapters

Greiner · Müller

Quantum Mechanics

Symmetries 2nd Edition

Greiner

Relativistic Quantum Mechanics

Wave Equations 2nd Edition

Greiner · Reinhardt

Field Quantization

Greiner · Reinhardt

Quantum Electrodynamics

2nd Edition

Greiner · Schramm · Stein
Quantum Chromodynamics

Greiner Maruhn
Nuclear Models

Greiner Müller

Gauge Theory of Weak Interactions

2nd Edition

Greiner

Classical Mechanics

Point Particles and Relativity

(in preparation)

Greiner

Classical Mechanics

Systems of Particles and Hamiltonian Dynamics

Greiner

Classical Electrodynamics

Greiner · Neise · Stöcker Thermodynamics and Statistical Mechanics

Foreword

More than a generation of German-speaking students around the world have worked their way to an understanding and appreciation of the power and beauty of modern theoretical physics—with mathematics, the most fundamental of sciences—using Walter Greiner's textbooks as their guide.

The idea of developing a coherent, complete presentation of an entire field of science in a series of closely related textbooks is not a new one. Many older physicians remember with real pleasure their sense of adventure and discovery as they worked their ways through the classic series by Sommerfeld, by Planck, and by Landau and Lifshitz. From the students' viewpoint, there are a great many obvious advantages to be gained through the use of consistent notation, logical ordering of topics, and coherence of presentation; beyond this, the complete coverage of the science provides a unique opportunity for the author to convey his personal enthusiasm and love for his subject.

These volumes on classical physics, finally available in English, complement Greiner's texts on quantum physics, most of which have been available to English-speaking audiences for some time. The complete set of books will thus provide a coherent view of physics that includes, in classical physics, thermodynamics and statistical mechanics, classical dynamics, electromagnetism, and general relativity; and in quantum physics, quantum mechanics, symmetries, relativistic quantum mechanics, quantum electro- and chromodynamics, and the gauge theory of weak interactions.

What makes Greiner's volumes of particular value to the student and professor alike is their completeness. Greiner avoids the all too common "it follows that...," which conceals several pages of mathematical manipulation and confounds the student. He does no nesitate to include experimental data to illuminate or illustrate a theoretical point, and these data, like the theoretical content, have been kept up to date and topical through frequent revision and expansion of the lecture notes upon which these volumes are based.

Moreover, Greiner greatly increases the value of his presentation by including something like one hundred completely worked examples in each volume. Nothing is of greater importance to the student than seeing, in detail, how the theoretical concepts and tools

Vi FOREWORD

under study are applied to actual problems of interest to working physicists. And, finally, Greiner adds brief biographical sketches to each chapter covering the people responsible for the development of the theoretical ideas and/or the experimental data presented. It was Auguste Comte (1789–1857) in his *Positive Philosophy* who noted, "To understand a science it is necessary to know its history." This is all too often forgotten in modern physics teaching, and the bridges that Greiner builds to the pioneering figures of our science upon whose work we build are welcome ones.

Greiner's lectures, which underlie these volumes, are internationally noted for their clarity, for their completeness, and for the effort that he has devoted to making physics an integral whole. His enthusiasm for his sciences is contagious and shines through almost every page.

These volumes represent only a part of a unique and Herculean effort to make all of theoretical physics accessible to the interested student. Beyond that, they are of enormous value to the professional physicist and to all others working with quantum phenomena. Again and again, the reader will find that, after dipping into a particular volume to review a specific topic, he or she will end up browsing, caught up by often fascinating new insights and developments with which he or she had not previously been familiar.

Having used a number of Greiner's volumes in their original German in my teaching and research at Yale, I welcome these new and revised English translations and would recommend them enthusiastically to anyone searching for a coherent overview of physics.

D. Allan Bromley Henry Ford II Professor of Physics Yale University New Haven, Connecticut, USA

Preface

Theoretical physics has become a many faceted science. For the young student, it is difficult enough to cope with the overwhelming amount of new material that has to be learned, let alone obtain an overview of the entire field, which ranges from mechanics through electrodynamics, quantum mechanics, field theory, nuclear and heavy-ion science, statistical mechanics, thermodynamics, and solid-state theory to elementary-particle physics; and this knowledge should be acquired in just eight to ten semesters, during which, in addition, a diploma or master's thesis has to be worked on or examinations prepared for. All this can be achieved only if the university teachers help to introduce the student to the new disciplines as early on as possible, in order to create interest and excitement that in turn set free essential new energy.

At the Johann Wolfgang Goethe University in Frankfurt am Main, we therefore confront the student with theoretical physics immediately, in the first semester. Theoretical Mechanics I and II, Electrodynamics, and Quantum Mechanics I—An Introduction are the courses during the first two years. These lectures are supplemented with many mathematical explanations and much support material. After the fourth semester of studies, graduate work begins, and Quantum Mechanics II—Symmetries, Statistical Mechanics and Thermodynamics, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions, and Quantum Chromodynamics are obligatory. Apart from these, a number of supplementary courses on special topics are offered, such as Hydrodynamics, Classical Field Theory, Special and General Relativity, Many-Body Theories, Nuclear Models, Models of Elementary Particles, and Solid-State Theory.

This volume of lectures, Classical Mechanics: Systems of Particles and Hamiltonian Dynamics, deals with the second and more advanced part of the important field of classical mechanics. We have tried to present the subject in a manner that is both interesting to the student and easily accessible. The main text is therefore accompanied by many exercises and examples that have been worked out in great detail. This should make the book useful also for students wishing to study the subject on their own.

Beginning the education in theoretical physics at the first university semester, and not as dictated by tradition after the first one and a half years in the third or fourth semester, has brought along quite a few changes as compared to the traditional courses in that discipline. Especially necessary is a greater amalgamation between the actual physical problems and the necessary mathematics. Therefore, we treat in the first semester vector algebra and analysis, the solution of ordinary, linear differential equations, Newton's mechanics of a mass point, and the mathematically simple mechanics of special relativity.

Many explicitly worked-out examples and exercises illustrate the new concepts and methods and deepen the interrelationship between physics and mathematics. As a matter of fact, the first-semester course in theoretical mechanics is a precursor to theoretical physics. This changes significantly the content of the lectures of the second semester addressed here. Theoretical mechanics is extended to systems of mass points, vibrating strings and membranes, rigid bodies, the spinning top, and the discussion of formal (analytical) aspects of mechanics, that is, Langrange's, Hamilton's formalism, and Hamilton–Jacobi formulation of mechanics. Considered from the mathematical point of view, the new features are partial differential equations, Fourier expansion, and eigenvalue problems. These new tools are explained and exercised in many physical examples. In the lecturing praxis, the deepening of the exhibited material is carried out in a three-hour-per-week theoretica, that is, group exercises where eight to ten students solve the given exercises under the guidance of a tutor.

We have added some chapters on modern developments of nonlinear mechanics (dynamical systems, stability of time-dependent orbits, bifurcations, Lyapunov exponents and chaos, systems with chaotic dynamics), being well aware that all this material cannot be taught in a one-semester course. It is meant to stimulate interest in that field and to encourage the students' further (private) studies.

The last chapter is devoted to the history of mechanics. It also contains remarks on the lives and work of outstanding philosophers and scientists who contributed importantly to the development of science in general and mechanics in particular.

Biographical and historical footnotes anchor the scientific development within the general context of scientific progress and evolution. In this context, I thank the publishers Harri Deutsch and F.A. Brockhaus (*Brockhaus Enzyklopädie*, F.A. Brockhaus, Wiesbaden—marked by [BR]) for giving permission to extract the biographical data of physicists and mathematicians from their publications.

We should also mention that in preparing some early sections and exercises of our lectures we relied on the book *Theory and Problems of Theoretical Mechanics*, by Murray R. Spiegel, McGraw-Hill, New York, 1967.

Over the years, we enjoyed the help of several former students and collaborators, in particular, H. Angermüller, P. Bergmann, H. Betz, W. Betz, G. Binnig, J. Briechle, M. Bundschuh, W. Caspar, C. v. Charewski, J. v. Czarnecki, R. Fickler, R. Fiedler, B. Fricke, C. Greiner, M. Greiner, W. Grosch, R. Heuer, E. Hoffmann, L. Kohaupt, N. Krug, P. Kurowski, H. Leber, H.J. Lustig, A. Mahn, B. Moreth, R. Mörschel, B. Müller, H. Müller, H. Peitz, G. Plunien, J. Rafelski, J. Reinhardt, M. Rufa, H. Schaller, D. Schebesta, H.J. Scheefer, H. Schwerin, M. Seiwert, G. Soff, M. Soffel, E. Stein, K.E. Stiebing, E. Stämmler, H. Stock, J. Wagner, and R. Zimmermann. They all made their way in science and society, and meanwhile work as professors at universities, as leaders in industry, and in other places. We particu-

larly acknowledge the recent help of Dr. Sven Soff during the preparation of the English manuscript. The figures were drawn by Mrs. A. Steidl.

The English manuscript was copy-edited by Heather Jones, and the production of the book was supervised by Francine McNeill of Springer-Verlag New York, Inc.

Walter Greiner Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany

Contents

Fc	preword	v
Pr	reface	vii
E>	camples	xviii
j	NEWTONIAN MECHANICS IN MOVING COORDINATE SYSTEMS	1
1	Newton's Equations in a Rotating Coordinate System	3
	Introduction of the operator \widehat{D} Formulation of Newton's equation in the rotating coordinate system Newton's equations in systems with arbitrary relative motion	7 7 8
2	Free Fall on the Rotating Earth	10
	Perturbation calculation Method of successive approximation Exact solution	12 14 15
3	Foucault's Pendulum	23
	Solution of the differential equations Discussion of the solution	26 28
		x

	_	_	
•	ı		
¥	1	ı	

	CONTENTS
MECHANICS OF PARTICLE SYSTEMS	39
Degrees of Freedom	41
Degrees of freedom of a rigid body	41
Center of Gravity	43
Mechanical Fundamental Quantities of Systems of Mass Points	66
Linear momentum of the many-body system Angular momentum of the many-body system Energy law of the many-body system Transformation to center-of-mass coordinates Transformation of the kinetic energy	66 67 69 72 73
VIBRATING SYSTEMS	81
Vibrations of Coupled Mass Points	83
The vibrating chain	90
The Vibrating String	105
Solution of the wave equation Normal vibrations	107 109
Fourier Series	125
The Vibrating Membrane	136
Derivation of the differential equation Solution of the differential equation: Rectangular membrane Inclusion of the boundary conditions Eigenfrequencies Degeneracy Nodal lines General solution (inclusion of the initial conditions) Superposition of node line figures The circular membrane Solution of Bessel's differential equation	136 138 140 141 141 142 143 145 146
	MECHANICS OF PARTICLE SYSTEMS Degrees of Freedom Degrees of freedom of a rigid body Center of Gravity Mechanical Fundamental Quantities of Systems of Mass Points Linear momentum of the many-body system Angular momentum of the many-body system Energy law of the many-body system Transformation to center-of-mass coordinates Transformation of the kinetic energy VIBRATING SYSTEMS Vibrations of Coupled Mass Points The vibrating chain The Vibrating String Solution of the wave equation Normal vibrations Fourier Series The Vibrating Membrane Derivation of the differential equation Solution of the differential equation: Rectangular membrane Inclusion of the boundary conditions Eigenfrequencies Degeneracy Nodal lines General solution (inclusion of the initial conditions) Superposition of node line figures

CONTENTS			iiix
	IV	MECHANICS OF RIGID BODIES	163
	11	Rotation About a Fixed Axis	165
		Moment of inertia (elementary consideration) The physical pendulum	166 171
	12	Rotation About a Point	190
	13	Tensor of inertia Kinetic energy of a rotating rigid body The principal axes of inertia Existence and orthogonality of the principal axes Transformation of the tensor of inertia Tensor of inertia in the system of principal axes Ellipsoid of inertia Theory of the Top The free top	190 193 194 196 200 202 203
		Geometrical theory of the top Analytical theory of the free top The heavy symmetric top: Elementary considerations Further applications of the top The Euler angles Motion of the heavy symmetric top	217 220 233 239 249 253
	V	LAGRANGE EQUATIONS	269
	14	Generalized Coordinates	271
		Quantities of mechanics in generalized coordinates	276
	15	D'Alembert Principle and Derivation of the Lagrange Equations	279
		Virtual displacements	279

xiv			CONTENTS
	16	Lagrange Equation for Nonholonomic Constraints	314
	17	Special Problems	324
		Velocity-dependent potentials Nonconservative forces and dissipation function (friction function)	324 328
		Nonholonomic systems and Lagrange multipliers	330
	VI	HAMILTONIAN THEORY	339
•	18	Hamilton's Equations	341
		The Hamilton principle	351
		General discussion of variational principles	354 364
		Phase space and Liouville's theorem The principle of stochastic cooling	369
	19	Canonical Transformations	380
	20	Hamilton-Jacobi Theory	386
		Visual interpretation of the action function S	400
		Transition to quantum mechanics	410
	VII	NONLINEAR DYNAMICS	417
	21	Dynamical Systems	419
		Dissipative systems: Contraction of the phase-space volume	421
		Attractors Equilibrium solutions	423 425
		Limit cycles	423
		——————————————————————————————————————	122

442

443

444

22 Stability of Time-Dependent Paths

Discretization and Poincaré cuts

Periodic solutions

TENTS	ΧV
23 Bifurcations	452
Static bifurcations	452
Bifurcations of time-dependent solutions	457
24 Lyapunov Exponents and Chaos	460
One-dimensional systems	460
Multidimensional systems	462
Stretching and folding in phase space	466
Fractal geometry	467
25 Systems with Chaotic Dynamics	475
Dynamics of discrete systems	475
One-dimensional mappings	476
VIII ON THE HISTORY OF MECHANICS	513
26 Emergence of Occidental Physics in the Seventeenth Century	515
Notes	522
Recommendations for further reading on theoretical mechanics	535
Index	537

Examples

1.1 1.2	Angular velocity vector ω	
2.1	Eastward deflection of a falling body	18
2.2	Eastward deflection of a thrown body	18
2.3	Superelevation of a river bank	19
2.4	Difference of sea depth at the pole and equator	20
3.1	Chain fixed to a rotating bar	29
3.2	Pendulum in a moving train	30
3.3	Formation of cyclones	34
3.4	Movable mass in a rotating tube	35
5.1	Center of gravity for a system of three mass points	45
5.2	Center of gravity of a pyramid	45
5.3	Center of gravity of a semicircle	46
5.4	Center of gravity of a circular cone	47
5.5	Momentary center and pole path	49
5.6	Scattering in a central field	51
5.7	Rutherford scattering cross section	56
5.8	Scattering of a particle by a spherical square well potential	60
5.9	Scattering of two atoms	64
6.1	Conservation of the total angular momentum of a many-body system:	
	Flattening of a galaxy	68
6.2	Conservation of angular momentum of a many-body problem:	
	The pirouette	69
6.3	Reduced mass	74
6.4	Movement of two bodies under the action of mutual gravitation	75
6.5	Atwoods fall machine	77
6.6	Our solar system in the Milky Way	78

7.1 7.2 7.3 7.4 7.5 7.6	Two equal masses coupled by two equal springs Coupled pendulums Eigenfrequencies of the vibrating chain Vibration of two coupled mass points, two dimensional Three masses on a string Eigenvibrations of a three-atom molecule	86 87 97 99 100 103
8.1 8.2 8.3 8.4	Kinetic and potential energy of a vibrating string	112 114 116 118
9.1 9.2 9.3 9.4 9.5	Inclusion of the initial conditions for the vibrating string by means of the Fourier expansion	128 129 130 132 133
10.1 10.2	The longitudinal chain: Poincaré recurrence time	155 160
11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11	Moment of inertia of a homogeneous circular cylinder Moment of inertia of a thin rectangular disk Moment of inertia of a sphere Moment of inertia of a cube Vibrations of a suspended cube Roll off of a cylinder: Rolling pendulum Moments of inertia of several rigid bodies about selected axes Cube tilts over the edge of a table Hockey puck hits a bar Cue pushes a billiard ball Motion with constraints Bar vibrates on springs	168 170 172 173 173 175 179 181 182 184 186 187
12.1 12.2 12.3 12.4 12.5 12.6 12.7	Tensor of inertia of a square covered with mass Transformation of the tensor of inertia of a square covered with mass Rolling circular top Ellipsoid of inertia of a quadratic disk Symmetry axis as a principal axis Tensor of inertia and ellipsoid of inertia of a system of three masses Friction forces and acceleration of a car	198 206 207 210 211 212 214
13.1 13.2 13.3 13.4	Nutation of the earth Ellipsoid of inertia of a regular polyhedron Rotating ellipsoid Torque of a rotating plate	225 226 227 228