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Preface

This book is based on a first-year graduate course given regularly by
the first author at the University of Chicago, most recently in the
autumn quarters of 1991, 1992, and 1993. The lectures given in this
course were expanded and prepared for publication by the second
author.

The aim of this book is to provide a concise yet thorough treat-
ment of some topics from group theory and representation theory
with which every mathematician should be well acquainted. Of.
course, the topics covered naturally reflect the viewpoints and in-
terests of the authors; for instance, we make no mention of free
groups, and the emphasis throughout is admittedly on finite groups.
Our hope is that this book will enable graduate students from every
mathematical field, as well as bright undergraduates with an interest
in algebra, to solidify their knowledge of group theory.

As the course on which this book is based is required for all in-
coming mathematics graduate students at Chicago, we make very
modest assumptions about the algebraic background of the reader.
A nodding familiarity with groups, rings, and fields, along with some
exposure to elementary number theory and a solid knowledge of lin-
ear algebra (including, at times, familiarity with canonical forms of
matrices), should be sufficient preparation.
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We now give a brief summary of the book’s contents. The first four
chapters are devoted to group theory. Chapter 1 contains a review
(largely without proofs) of the basics of group theory, along with
material on automorphism groups, semidirect products, and group
actions. These latter concepts are among our primary tools in the
book-and are often not covered adequately during one’s first exposure
to group theory. Chapter 2 discusses the structure of the general
linear groups and culminates with a proof of the simplicity of the
projective special linear groups. An understanding of this material
is an essential (but often overlooked) component of any substantive
study of group theory; for, as the first author once wrote:

The typical example of a finite group is GL(n, g), the
general linear group of n dimensions over the field
with ¢ elements. The student who is introduced to
the subject with other examples is being completely
misled. [3, p. 121]

Chapter 3 concentrates on the examination of finite groups through
their p-subgroups, beginning with Sylow’s theorem and moving on
to such results as the Schur-Zassenhaus theorem. Chapter 4 starts
with the Jordan-Holder theorem and continues with a discussion of
solvable and nilpotent groups. The final two chapters focus on finite-
dimensional algebras and the representation theory of finite groups.
Chapter 5 is centered around Maschke’s theorem and Wedderburn’s
structure theorems for semisimple algebras. Chapter 6 develops the
ordinary character theory of finite groups, including induced charac-
ters, while the Appendix treats some additional topics in character
theory that require a somewhat greater algebraic background than
does the core of the book.

We have included close to 200 exercises, and they form an integral
part of the book. We have divided these problems into “exercises”
and “further exercises;” the latter category is generally reserved for
exercises that introduce and develop theoretical concepts not in-
cluded in the text. The level of the problems varies from routine
to difficult, and there are a few that we do not expect any student to
be able to handle. We give no indication of the degree of difficulty
of each exercise, for in mathematical research one does not know in
advance what amount of work will be required to complete any step!
In an effort to keep our exposition self-contained, we have strived to
keep references in the text to the exercises at a minimum.



Preface vii

The sections of this book are numbered continuously, so that Sec-
tion 4 is actually the first section of Chapter 2, and so forth. A cita-
tion of the form “Proposition Y” refers to the result of that name in
the current section, while a citation of the form “Proposition X.Y”
refers to Proposition Y of Section X.

We would like to extend our thanks to: Michael Maltenfort and
Colin Rust, for their thought-provoking proofreading and their many
constructive suggestions during the preparation of this book; the stu-
dents in the first author’s 1993 course, for their input on an earlier
draft of this book which was used as that course’s text; Efim Zel-
manov and the students in his 1994 Chicago course, for the same rea-
son; and the University of Chicago mathematics department, for con-
tinuing to provide summer support for graduate students, as without
such support this book would not have been written in its present
form. We invite you to send notice of errors, typographical or oth-
erwise, to the second author at bell@math.uchicago.edu.

In remembrance of a life characterized by integrity, devotion to
family, and service to community, the second author would like to
dedicate this book to David Wellman (1953-1995).
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1
Rudiments of Group Theory

In this introductory chapter, we review the elementary notions of group
theory and develop many of the tools that we will use in the remaining
chapters. Section 1 consists primarily of those facts with which we assume
the reader is familiar from some prior study of group theory; consequently,
most proofs in this section have been omitted. In Section 2 we introduce
some important concepts, such as automorphism groups and semidirect
products, which are not necessarily covered in a first course on group the-
ory. Section 3 treats the theory of group actions; here we present both
elementary applications and results of a more technical nature which will
be needed in later chapters.

1. Review

Recall that a group consists of a non-empty set G and a binary
operation on G, usually written as multiplication, satisfying the fol-
lowing conditions:

o The binary operation is associative: (zy)z = z(yz) for any
z,y,2 € G.

e There is a unique element 1 € G, called the identity element
of G, such that z1 =z and lz =z for any z € G.
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o For every z € G there is a unique element z~! € G, called the
inverse of z, with the property that zz™' = 1 and z7'z = 1.

Associativity allows us to consider unambiguously the product of any
finite number of elements of a group. The order of the elements in
such a product is critically important, for if z and y are elements of
a group G, then it is not necessarily true that zy = yz. If this hap-
pens, then we say that z and y commute. More generally, we define
the commutator of z and y to be the element [z,y] = zyz~ly~!,
so that z and y commute iff [z,y] = 1. (Many authors define
[z,y] = z 'y 'zy.) We say that G is abelian if all pairs of elements
of G commute, in which case the order of elements in a product is
irrelevant; otherwise, we say that G is non-abelian. The group oper-
ation of an abelian group may be written additively, meaning that
the product of elements = and y is written as z +y instead of zy, the
inverse of z is denoted by —z, and the identity element is denoted
by 0.

If z is an element of a group G, then for n € N we use z"
(resp., z7") to mean the product z - - - = (resp., z7! - - - z7') involving
n terms. We also define z° = 1. (In an abelian group that is written
additively, we write nc instead of ™ for n € Z.) It is easily seen that
the usual rules for exponentiation hold. We say that z is of finite
order if there is some n € N such that z” = 1. If z is of finite order,
then we define the order of z to be the least positive integer n such
that z" = 1. Clearly, z is of order n iff 1,z,?,... , 2! are distinct
elements of G and z" = 1.

A group G is said to be finite if it has a finite number of elements,
and infinite otherwise. We define the order of a finite group G,
denoted |G/, to be the number of elements of G; we may also use | S|
for the cardinality of any finite set S. Every element of a finite group
is of finite order, and there are infinite groups with this property;
these groups are said to be periodic. However, there are infinite
groups in which the identity element is the only element of finite
order; such groups are said to be torsion-free.

A subset H of a group G is said to be a subgroup of G if it forms
a group under the restriction to H of the binary operation on G.
Equivalently, H C G is a subgroup iff the following conditions hold:

o The identity element 1 of G lies in H.
e If z,y € H, then their product zy in G lies in H.
o If z € H, then its inverse z~! in G lies in H.
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Clearly G is a subgroup of itself. The set {1} is also a subgroup
of G; it is called the trivial subgroup, and for the sake of simplicity we
denote it by 1. Every subgroup of a finite group is finite; however, an
infinite group always has both finite and infinite subgroups, namely
its trivial subgroup and itself, respectively. Similarly, every subgroup
of an abelian group is abelian, but a non-abelian group always has
both abelian and non-abelian subgroups. If H is a subgroup of G,
then we write H < G if H is properly contained in G, then we call H
a proper subgroup of G, and we may write H < G. (This notational
distinction is common, but not universal.) If K < H and H < G,
then evidently K < G.

ProrosiTION 1. If H and K are subgroups of a group G, then
so is their intersection H N K. More generally, the intersection of
any collection of subgroups of a group is also a subgroup of that
group. W

The following theorem gives important information about the na-
ture of subgroups of a finite group.

LAGRANGE’S THEOREM. Let G be a finite group, and let H < G.
Then |H| divides |G]. ®

If X is a subset of a group G, then we define <X> to be the in-
tersection of all subgroups of G which contain X. By Proposition 1,
<X> is a subgroup of G, which we call the subgroup of G generated
by X. We see that <X > is the smallest subgroup of G which con-
tains X, in the sense that it is contained in any such subgroup; hence
if X <G, then <X>= X. If X = {z}, then we write <z> in lieu
of <X>; similarly, if X = {z,,...,z,}, then we write <z,, ... ,z,>
for <X>.

PROPOSITION 2. Let X be a subset of a group G. Then <X>
consists of the identity and all products of the form z¢ - - . ztr where
reN,z;€X,ande;, =+1foralli. B

A group G is said to be cyclic if G = <g> for some g € G; the
element g is called a generator of G. For example, if G is a group
of order n having an element g of order n, then G = <g> since
g,---,9"1,g" = 1 are n distinct elements of G. By Proposition 2
we have <g>= {g" | n € Z}, and consequently we see via the ex-
ponentiation relations that cyclic groups are abelian; nonetheless,
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we will generally write cyclic groups multiplicatively instead of ad-
ditively. If g is of order n, then <g>= {1,g,...,9" '}, and hence
|<g>| = n. If g is not of finite order, then <g> is a torsion-free in-
finite abelian group. Any two finite cyclic groups of the same order
are “equivalent” in a sense that will be made precise later in this
section, and any two infinite cyclic groups are equivalent in the same
sense. The canonical infinite cyclic group is Z, the set of integers
under addition, while the canonical cyclic group of order n is Z/nZ,
the set of residue classes of the integers under addition modulo n.

Suppose that G is a finite group and g € G is of order n. Then
<g> is a subgroup of G of order n, so by Lagrange’s theorem we see
that n divides |G|. Thus, the order of an element of a finite group
must divide the order of that group. Consequently, if |G| is equal
to some prime p, then the order of each element of G must be a
non-trivial divisor of p, from which it follows that G is cyclic with
every non-identity element of G being a generator.

If X and Y are subsets of a group G, then we define the product
of XandY in Gtobe XY ={zy |z € X,ye Y} C G. Wecan
extend this definition to any finite number of subsets of G. We also
define the inverse of X CG by X' ={z7' |z€ X} CG. IfHis
a non-empty subset of G, then H < Gif HH = H and H~! = H.

"PROPOSITION 3. Let H and K be subgroups of a group G. Then
HK isasubgroupof GIif HK =KH. &

Observe that if H and K are subgroups of G, then their product
HK contains both H.and K; if in addition K < H, then HK = H.
(These properties do not hold if H and K are arbitrary subsets of G.)
If G is abelian, then HK = K H for any subgroups H and K of G,
and hence the product of any two subgroups of an abelian group is
a subgroup.

We can now describe the subgroup structure of finite cyclic groups.

THEOREM 4. Let G = <g¢g> be a cyclic group of order n. Then:

(i) For each divisor d of n, there is exactly one subgroup of G of
order d, namely <g2>. .
(ii) If d and e are divisors of n, then the intersection of the sub-
groups of orders d and e is the subgroup of order ged(d, e).
(iii) If d and e are divisors of n, then the product of the subgroups
of orders d and e is the subgroup of order lcm(d,e). B
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If H < G and z € G, then we write zH instead of {z}H; the set
zH is called a left coset of H in G. Similarly, we write Hz instead
of H{z}, and we call Hz a right coset of H in G. In this book we
shall use left cosets, and consequently from now on the word “coset”
should be read as “left coset.” Our use of left cosets instead of right
cosets is essentially arbitrary, as any statement that we make about
left cosets has a valid counterpart involving right cosets. Indeed,
many group theory texts use right cosets where we use left cosets.
There is a bijective correspondence between left and right cosets of
H in G, sending a left coset zH to its inverse (zH)™! = Hz ..

Let H be a subgroup of G. Any two cosets of H in G are either
equal or disjoint, with cosets H and yH being equal iff y~'z € H.
Consequently, an element z € G lies in exactly one coset of H,
namely zH. For any 2 € G, there is a bijective correspondence
between H and zH; one such correspondence sends h € H to zh.
We define the indez of H in G, denoted |G : H|, to be the number of
cosets of H in G. (If there is an infinite number of cosets of H in G,
then we could define |G : H| to be the appropriate cardinal number
without changing the truth of any statements made below, as long as
we redefine |G| as being the cardinal number |G : 1|.) The cosets of
H in G partition G into |G : H| disjoint sets of cardinality |H|, and
hence we have |G| = |G : H||H|. (This observation proves Lagrange’s
theorem; however, it is possible to prove Lagrange’s theorem without
reference to cosets by means of a simple counting argument.) In
particular, all subgroups of a finite group are of finite index, while
subgroups of an infinite group may be of finite or infinite index. We
denote the set of cosets (or the coset space) of H in G by G /H.

We can now give a complete description of the subgroups of infinite
cyclic groups. We invite the reader to restate Theorem 4 in such a
way so as to make the parallelism between Theorems 4 and 5 more
explicit.

THEOREM 5. Let G =<g> be an infinite cyclic group. Then:

(i) For each d € N, there is exactly one subgroup of G of index d,
namely <g%>. Furthermore, every non-trivial subgroup of G
is of finite index.

(ii) Let d,e € N. Then the intersection of the subgroups of in-
dices d and e is the subgroup of index lem(d, e).

(iii) Let d,e € N. Then the product of the subgroups of indices d

and e is the subgroup of index gcd(d,e). M
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The following result generalizes Lagrange’s theorem and shall be
referred to as “factorization of indices.”

THEOREM 6. If K < H < G, then |G : K| = |G : H||H: K|. &

Let H be a subgroup of a group G, and let 7 be an indexing set
that is in bijective correspondence with the coset space of H in G.
A subset T = {t, |1 € T} of G is said to be a (left) transversal for H
(or a set of (left) coset representatives of H in G) if the sets t;H are
precisely the cosets of H in G, with no coset omitted or duplicated.

Let IV be a subgroup of a group G. We say that N is a normal
subgroup of G (or that N is normal in G) if zN = Nz for all z € G,
or equivalently if zNz™! C N for all z € G. If G is abelian, then
every subgroup of G is normal. The subgroups 1 and G are always
normal in G; if these are the only normal subgroups of G, then we
say that G is simple. For example, a cyclic group of prime order
is simple. (A group having only one element is by convention not
considered to be simple.) If N is normal in G, then we write N < G;
if N is both proper and normal in G, then we may write N < G.
(Once again, many authors do not make this distinction and instead
use N < G to mean simply that N is normal in G.) If H < G and
K < H, then it is not necessarily true that K < G; we will provide
a counterexample momentarily. However, it is clearly true that if
K<dGand K< H<LG, then K Q4 H.

PROPOSITION 7. Let H and K be subgroups of a group G. If
K 4 G, then HK < Gand HNK 4 H; if also H < G, then
HKdGand HNK AG. B

PROPOSITION 8. Any subgroup of index 2 is normal.

ProOOF. Let H < G, and suppose that |G : H| = 2. Then there
are two left cosets of H in G; one is H, and thus the other must
be G ~ H. Similarly, H and G — H are the two right cosets of H
in G. It now follows that z € H iff tH = H = Hz, and z ¢ H iff
zH=G-H=Hz;hence HIG. A

Normal subgroups are important because they allow us to create
new groups from old, in the following way:

THEOREM 9. If N 4 G, then the coset space G/N forms a group
under the binary operation defined by (zN)(yN) = (zy)N. W
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If N 9 G, then we call G/N with the above binary operation the
quotient group of G by N. The identity element of G/N is N, and
the inverse of N € G/N is z7!N. If G is abelian, then G/N is also
abelian.

Let = and g be elements of a group G. The conjugate of z by ¢
is defined to be the element gzg~' of G. (Some authors define the
conjugate of z by g to be g~'zg. The notations 9z and x? are some-
times used for gzg~! and g~'zg, respectively.) Two elements z and y
of G are said to be conjugate if there exists some g € G such that
y = grg~'. No two distinct elements of an abelian group can be
conjugate. A subgroup N of G is normal iff every conjugate of an
element of N by an element of G lies in N.

Let X be a set. A permutation of X is a bijective set map from
X to X. The set of permutations of X, denoted L, forms a group
under composition of mappings. If X = {1,... ,n} for some n € N,
then this group is called the symmetric group of degree n and is
denoted £,. (Many authors denote this group by S, or &,.) The
group X, is finite and of order n! =n(n - 1)---2-1.

. An element p of ¥, is called a cycle of length r (or an r-cycle) if
there are distinct integers 1 < a,,... ,a, < n such that pla:) = (ais)
forall 1 <i<r, p(a,) = a;, and p(b) = b for any 1 < b < n which
is not equal to some a;. If the cycle p is as defined above, then we
write p = (a; --- a,). Of course, this can be done in r different ways;
for example, (1 2 4), (2 4 1), and (4 1 2) denote the same 3-cycle
in 4. The cycle p as defined above is said to move each a; and fiz
every other number. Two cycles are said to be disjoint if there is
no number that is moved by both cycles. The product of two cycles
(ay --- a,)and (b; --- b,)is written (ay -+ a.Xby --- b,);ifa; = b;,
then this product moves b;_; to a;;,. (We read from “right to left”
in this manner because we think of the cycles as being functions
on {1,...,n}, and so the product of two cycles corresponds to a
composition of functions, which we choose to perform from right to
left in the usual fashion. In many group theory texts, composition
is performed from left to right.) : ;

Every element of ¥, can be written as a product of disjoint cy-
cles; such an expression is called a disjoint cycle decomposition of
the permutation. Any two disjoint cycle decompositions of a given
permutation must necessarily include the same cycles, but possibly
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in some different order. Therefore we can associate, in a well-defined
way, a collection of positive integers whose sum is n to each element p
of ,; this partition of n consists of the lengths of the cycles that
appear in a disjoint cycle decomposition of p and is called the cycle
structure of p. For example, the cycle structure of an r-cycle in X,
is the partition (r,1,...,1) having n — r ones; the cycle structure
of (1 2 43 5) in Z¢ is the partition (3,2,1). We generally omit
1-cycles when writing a permutation as a product of disjoint cycles.
As usual, we will use 1 to denote the identity element of ¥,,, whose
disjoint cycle decomposition consists solely of 1-cycles.

PropoSITION 10. Let n € N. Then two elements of ,, are con-
jugate iff they have the same cycle structure. H

For a proof, see (24, pp. 46-7].

A transposition in L, is a 2-cycle. Every element of £, can be
written as a (not necessarily disjoint) product of transpositions in
many different ways. However, it can be shown that any two ex-
pressions of a given permutation as a product of transpositions use
the same number, modulo 2, of transpositions. (See [24, pp. 8-9].)
Hence we can say that a permutation is even (resp., odd) if it can
be written as a product of an even (resp., odd) number of transpo-
sitions, for a permutation is either even or odd, but never both. For
example, since an r-cycle can be written as a product of » — 1 trans-
positions, we see that a cycle is an even permutation iff its length
is odd. The subset of ¥, consisting of all even permutations is a
subgroup of index 2, and hence is normal in X, by Proposition 8; it
is called the alternating group of degree n and is denoted A,.

Consider H = {1, (1 2)3 4), (1 3X2 4), (1 4X2 3)} C A,4. One can
show that H < A;. (In fact, H is normal in £,. This group H is
historically called the Klein four-group.) Let K = {1,(1 2)3 4)}.
Then K is a subgroup of H with |H : K| = |H|/|K] = 4/2 = 2, and
hence K J H by Proposition 8. However, by conjugating (1 2)3 4)
by the even permutation (1 2 3), we see that K is not normal in A,.
This provides the counterexample referred to on page 6.

Let G and H be groups. A homomorphism is a map ¢: G —» H
with the property that ¢(xy) = ¢(z)p(y) for all z,y € G; that is,
a homomorphism is a map between groups which preserves the re-
spective group structures. If ¢ is a homomorphism, then ¢(1) = 1,
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and p(z ') = ¢(z)~* for any element z. The trivial homomorphism
from G to H is the map sending every element of G to the identity
element of H. If a homomorphism ¢ is injective, then we call ¢ a
monomorphism, and if ¢ is surjective, we call ¢ an epimorphism;
we say that ¢ is an isomorphism if ¢ is bijective. (Recall that a
set map f: X — Y is called injective if f(z) = f(z') forces z = 7',
surjective if for any y € Y we have f(z) = y for some z € X, and
bijective if it is both injective and surjective.) If ¢ is an isomor-
phism, then so is ¢™': H — G. A homomorphism ¢: G — G is
called an endomorphism of G, a bijective endomorphism is called an
automorphism.

If G and H are groups and there is an isomorphism ¢: G — H,
then we say that G and H are isomorphic, or that G is isomorphic
with H, and we writeeG = H. The notion of isomorphism is an
equivalence relation on groups; that is, it is reflexive (G = G), sym-
metric (G 2 H implies H = G), and transitive (G® H and H 2 K
together imply G = K). Therefore, we can speak of the “isomor-
phism class” to which a given group belongs. Isomorphic groups
are to be thought of as being virtually identical, in the sense that
any statement made about a group is true (after making appropriate
identifications) for any other group with which it is isomorphic. If
we say that a group having certain properties is “unique,” then we
often mean that it is “unique up to isomorphism,” by which we mean
that any two groups having the specified properties are isomorphic.

We now consider some standard examples.

e Let G =<g> and H = <h> be two cyclic groups of order n.
We define a map ¢: G — H by setting ¢(g®) = h® for every
0 < a < n. This map ¢ is an isomorphism. Consequently,
any two finite cyclic groups of the same order are isomor-
phic. In particular, any cyclic group of order 7 is isomorphic
with Z/nZ, and there is a unique group of order p for each
prime p. We will use Z, to denote a cyclic group of order n,
written multiplicatively. We can similarly show that any two
infinite cyclic groups are isomorphic; we will use Z to denote
an infinite cyclic group, written multiplicatively.

e Let G be a group, let H < G, and let g € G. The conjugate
of H by g is the set gHg™! = {ghg™' | h € H} consisting
of all conjugates of elements of H by g. It is easily verified
that gHg™' < G. We say that K < G is a conjugate of H



