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Preface

Nonlinear wave phenomena are of great importance in the physical world and
have been for a long time a challenging topic of research for both pure and
applied mathematicians. There are numerous nonlinear evolution equations
for which we need to analyze the properties of the solutions for time evolution
of the system. As the first step, we should understand the dynamics of their
traveling wave solutions. :

There exists enormous literature on the study of nonlinear wave equations,
in which exact explicit solitary wave, kink wave, periodic wave solutions, bifur-
cations and dynamical stabilities of these waves are discussed. To find exact
traveling wave solutions for a given nonlinear wave system, a lot of methods
have been developed such as the inverse scattering method, Darboux trans-
formation method, Hirota bilinear method, algebraic-geometric method, tanh
method, etc. What is the dynamical behavior of these exact traveling wave
solutions? How do the traveling wave solutions depend on the parameters of
the system? What is the reason of the smoothness change of traveling wave
solutions? How to understand the dynamics of the so-called compacton and
peakon solutions? These are very interesting and important problems. In
recent years, these topics have seen significant advances and research is also
very active.

The aim of this book is to give a more systematic account for the bifurca-
tion theory method of dynamical systems to find traveling wave solutions with
an emphasis on singular waves and understand their dynamics for some classes
of the well-posedness of nonlinear evolution equations. Usually, most natural
systems are modeled by nonlinear partial differential equations. To consider
traveling wave solutions of a partial differential equation, the essential work
is to investigate the dynamical behavior of the corresponding ordinary differ-
ential equation (traveling wave equation). Therefore, the theory of dynamical
systems plays a pivotal role in the qualitative study.

In this book, we pursue the line of studying somewhat less general, but
hopefully more typical nonlinear wave equations. Usually, there exists at least
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a singular straight line (or curve) such that the right hand of the corresponding
traveling wave systems of these partial differential equations is discontinuous.
It was first found by Dai (1998b) (see also Dai and Huo (2000)) that the pres-
ence of such a singular line in a phase plane can result in a variety of singular
waves (i.e., compactons, peakons and periodic peakons, breaking waves and
so on) to appear. - The transformation technique of dynamical systems (first
introduced in Li and Liu (2000)) allows us to achieve greater precision stud-
ies by using the method of dynamical bifurcation theory of the differentiable
dynamics and to work out methods which lead to proofs within the present
knowledge of analysis. We now call the study method as “three-step method”,
which will be introduced in Chapter 2.

The materials of this book are mainly taken from the published papers
written by authors, their collaborators and students. Some results are new
which will be appeared in future coming journals. We hope that this book
can serve as a guide to what can be cleared about the dynamical ideas in
studying the traveling wave solutions of some nonlinear wave equations and
for correcting some mistakes in understanding the dynamical behavior of some
exact explicit traveling wave solutions.

Any reader trying to understand the subject of this book is only required to
know the elementary theory of dynamical systems and elementary knowledge
of nonlinear wave equations.

We would like to acknowledge the encouragement, advice and help of Pro-
fessors Li Dagian, Wang Shiqian, Li Yishen. We thank our former and current
students and colleagues for their understanding and support.

The publication of this book is supported by the Research Foundation of
the Center for Dynamical Systems and Nonlinear Studies of Zhejiang Normal
University. The work described in this book is supported by a grant from
City University of Hong Kong and grants from the National Natural Science
Foundation of China and Natural Science Foundation of Yunnan province.

Jibin Li
Summer 2006
Center for Dynamical and Nonlinear Studies,

Zhejiang Normal University, Jinhua, Zhsjiang, 321004
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Chapter 1

Traveling Wave Equations of Some
Physical Models

The mathematical modeling of important phenomena arising in physics and
biology often leads to nonlinear wave equations. It is quite remarkable that
many of these universal equations exhibit a regular behavior, typical of inte-
grable partial differential systems (there exist Hamiltonian structures). And
their traveling wave systems are also integrable ordinary differential equa-
tions, in which there exist some singular properties. In this chapter, we shall
address some very interesting mathematical models which describe specific
natural phenomena.

1.1 The model of nonlinear oscillations of hyperelastic rods

Suppose that a circular cylindrical rod undergoes only axisymmetric radial
and longitudinal motion. The rod composes of compressible and isotropic
homogeneous materials. In an undistorted reference configuration, the rod is
a circular cylinder of radius a. Its motion can be described by

2=%(2,T), r=7#Z,T)R, 6=86, (1.1.1)
where z,7,0 are the cylindrical coordinates of a material point which has
Z, R, © coordinates in the reference configuration and T is the time. For such
a motion, the three principle invariants can be easily calculated and they are
given by ! ' :

L = 27'2 + Zi + T§R2, (1]‘2)
L=r?r? 4222 4+ r2R?, (1.1.3)
13 == 7‘4Z§_ (1.1.4)

1Henceforth, for the convenience of notations, we shall drop the 7, i.e. r means 7.
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For a compressible Mooney-Rivlin material, the Helmholtz free-energy
function has the following form

o= 3u(5+5) (h—3)+§u(§—ﬁ) (I - 3)

1 1 3
+§[.Lk(13 -1) - 5;1, (k + 5" ﬁ) In I3, (1.1.5)

1 1
where p >0, k>0, —-= <8< 5 are material constants. If the material is’

incompressible, then, the third principle invariant I3 = 1, and equation (1.1.5)
yields the free-energy function for an incompressible Mooney-Rivlin material.
And if further § = 1/2, equation (1.1.5) gives the free-energy function for
an incompressible neo-Hookean material. Generally, if 8 = 1/2 in (1.1.5), ®,
then depending only on the first and the third principal invariants I; and I3,
may be regarded as the free-energy function for a compressible neo-Hookean
material.

With the above free-energy function, the potential energy density can be
calculated. The kinetic energy density can be calculated by using (1.1.1). The
difference of these two quantities gives the Lagrangian. The rod equations are
given by -

( 1 1
_ZIZTT + '2’(1 + zﬂ)zzz + 5(21‘7 +3- 25)%%2_ + (1 - 2/6)7'2zzz

z

+2(1 — 2B)rr, 2, + kriz,, + 4kr®r, 2, = 0,

(2 + 3 — 20)
- T

(1 +28)r + (1 —28)r% + 2kr3z2 + (1 — 28)r22 (1.1.6)

1 1
——azz(l - Zﬂ)rrg - azz(l -~ 2,3)7‘27‘ZZ

1 1
+§a2§rﬂ. - aZZ(l +208)r,, =0,
\

where p is the material density. Equations (1.1.6) provide two coupled equa-
tions for z and r, which are the 1-dimensional rod system we shall work with.
It can be seen that this system is very complicated and highly nonlinear.

We are interested in traveling wave solutions of (1.1.6). Let ) be the axial
stretch z,. For traveling waves, we have

A=), r=r§), ¢€=Z-cT (1.1.7)
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where ¢ is the propagating wave velocity. Noting that z,., = ¢ )‘557 an inte-
gration of the first equation in (1.1.6) with respect to £ yields

((1+2ﬁ) )A——(2k+3 2ﬂ) +(1-28)r A+ krix=g, (1.1.8)

where g is an integration constant. The second equation in (1.1.6) becomes
ca’p  a*(1+28) a*(1-28)r? a?(1-28) ,
- - r, - ————trr
2 4 4 & 4 ¢
_(2k+3-20)
r

+(1+28)r + (1 —28)r3 + (1 — 28)r + 2kr®)\2 = 0.

(1.1.9)
Denote that 2 1128 24327 -
cp_1+p _2k+3- ;
= 5 @@= 5 (1.1.10)
and
n(r) = kr* + (1-28)r° - a. (1.1.11)
Thus, (1.1.8) becomes -
| | 7(r)A> — gA —ag = 0. (1.1.12)

For a; < 0,n(r) > 0. Notice that A should always be positive, so that
+ /g% + 4
A= ZEVE Hdaan(r) o o 0, g€ R. (1.1.13)
2n(r) '
When a; > 0,7(r) has a positive zero at r = r,, where

(VA28 T e — (1-28)\?
™= %

If for a wave that the value of r is always larger than r,, which means that
n(r) > 0, X has the same form as (1.1.13). If for a wave there exists a point

such that the value of r is equal to r,, we have from (1.1.12) that
Alyzr, = —%. | (1.1.14)

Hence in this case it is necessary to suppose that g < 0. If for a wave that the
interval of the values of r contains r,, then we have

g+ VA

A= 2n(r) ’

for g<o0, (1.1.15)
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where A = g2 + 4agn(r) > 0. If for a wave that the value of T is always
smaller than 7, which implies that n(r) < 0, and we allow r — r,, we also
have (1.1. 15) Therefore, for all g € R we have

9% + gV A + 2aan(r)
Lo (1.1.16)

and need to discuss the folldwing three cases:
(i) @1 <0 and g € R for any value of r > 0;
(if) a3 > 0 and g > 0 for r > 7y;
(iii) a; > 0'and g < 0 for any value of r > 0.

201 —
Let b1 = ,bo = (1 1 2@. Define that

A=

2
((r) =1~ 28)r*+ (1 +26)r® - 2a5, (r) = 2kr* + (L —20)r®. (1.1.17)

Substituting the expressions of A2 into (1.1.9), we obtain

(by — bar®)r,, — barrg + &(r) =0, (1.1.18)

where o) -
T

o(r) = () for r#ry; (1.1.19)

Y(r) = 20(r)n(r)¢(r) + ax8(r)] + g°6(r) + g 6(r)VA. (1.1.20)

When r = 7., n(r«) = 0, we have from \ = =% that
g

*¢(r.) + a36(r.)

o (1.1.21)

O(r,) =

Notice that lim,_,,, ®(r) = ®(r.). It implies that the vector field defined
by (1.1.18) is continuous in the straight line r = r,. The point r = r, is a
removable discontinuity point of the function ®(r). '

In order to study the dynamical behavior of solutions of equation (1.1.18),
introducing new variable y = r¢, we obtain the following planar system

dr _ dy . 2bor’pP(r)y? = p(r)

d_é“,_y’- ¢ 2rn2(r)(b —byr?) (1.1.22)

This is an integrable system with the first integral

(1 25)4

H(r,y) = y2(by — bor?) + (1 +28)r° + >

—4agInr 4+ azIn|n(r)|

—— e —————— —— =
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_2 A 20VA asg VA~ WA -ldll | (1.1.23)
2n(r) ~ 2gn(r) g gl (VA +|g)’
where A = g2 + 4aon(r). Therefore, the system (1.1.22) can be written as
follows
dr dy OH
-, === —_— 1.1.24
=G L= —unl, (1.1.2)

where p(r) = is the integral factor. Clearly, when b; — byr? = 0,

1
2(b1 - 627‘2)
the right hand of the second equation of (1.1.22) is discontinuous. We need to

treat this problem in next chapter.
1.2 Higher order wave equations of Korteweg-De Vries type

In 1995, A.S. Fokas proposed to study a class of physically important integrable
equations including higher order wave equations of the Korteweg-De Vries
Type. Consider the motion of a 2-dimensional, inviscid, incompressible fluid
(water) lying above a horizontal flat bottom located at y = —hg (hg constant),
and let there be air above the water. It turns out that, for such a system if the
vorticity is zero initially, it remains zero. We analyze only such irrotational
flows. This system is characterized by two parameters, A = 2 and B =

ho
2
}7129, where a and [ are typical values of the amplitude and of the wavelength
of the waves. Let n and ¢ denote the position of the free surface and the
velocity potential, respectively. Then n(z,t) and w(z,t) where w = £, and
¢ =3 F(=B)™(1 + An)>™ 2™ /(2m)! (f™ denote the m—th derivative of f

with respect to ) satisfy (see Whitham (1974))

1 1 1
e+ wg + Alnw), — ngmz — §AB(nwm)x — §AzB(n2wm)z + 0(B2) =0,

(1.2.1)
1 1
wt+77z+Awwz+§B77a:xa: —I—AB(’O??;,;;,, +w3:)$ +A2B(2772w92¢-+ 5772773303)11 +O(B2) =
: (1.2.2)

Suppose that O(B) is less than O(A) and the waves are unidirectional. Ne-
glecting terms of O(a?, &3, %), equations (1.2.1) and (1.2.2) yield

Mt + N + NNz + Bliezz + p10°0* 0z + aB(02MMzsz + P3NeTzz)

+p4a3n3nz + &2 Blp57 Nowz + PeaTzz + pr3)] = 0, (1.2.3)
where @ = — ,8 _1 =3 B 1 7
= 3 = PL= 6’ P2—3, p3 = 6’ p4—’87 Ps = 18’ Pe =
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0o
365 p7_—

KdV equation

g—g. Neglecting terms of O(a?, af8), equation (1.2.3) reduces to the

Neglecting terms of O(a?,a?8), equation (1.2.3) reduces to the “more physi-
cally realistic form”

i

M+ 0z + an’% + BNzzz + Pla27?2"7:c + aﬂ(ﬂzﬂﬂmm + 9377m7)m:) =0. (1'2'5)

We assume that p;, ¢ = 1—7 in (1.2.3) are considered as free parameters. Then,
(1.2.5) and {1.2.3) are called second order and third order wave equations of
KdV type, respectively.

A.S. Fokas also derived the following integrable generalizations of modified
KdV equation

1 v
Ut + Uz + VUggs + BUzez + Quuyg + -?:au(uuwm + 2uptzr) =0 (1.2.6)
and

1
Up + Ug + Vllggt + Blgzs + quug + gau(uumm + ugtzs) + Spatutu,

+vpo (g, + uS + dungtzg) + Vo (W ges + 2uzul ) = 0. (1.2.7)

First, we consider the traveling wave equation of the second order wave
equations (1.2.5) of KdV type. Letting n(z,t) = ¢(x — ct) = $(£), where c is
the wave speed and ¢ = « — ct, substituting ¢(x — ct) into (1.2.5), we obtain

(1-c)¢'+ %a(¢2)'+ﬁ¢”' + %azﬂ1(¢3)'+aﬂ(m(¢¢")' + %(03 ~p2)((¢)%)) =0,

(1.2:8)
where “” is the derivative with respect to &. Integrating once with respect to
£, we have the following traveling wave equation of (1.2.5)

BL+apd)"+50B(os — p2)(#)+ 502 +3ad +H(1 ~ )o+g =0, (1.29)

where g is the integral constant. (1.2.9) is equivalent to ‘the following 2-
dimensional system

¢ _ . dy__3af(ps = po)y” +20°m¢’ + 308 +6(1-c)g +g
@7 d 68(1 + apz) :

(1.2.10)
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We next assume that g = 0. Let p3 = pp2, where p is a real number. Then, for
p3 # —2pa, p3 # Lpz ie., p# —2, p# *1, system (1.2.10) has the following
first integrals

Ao + Bop + Co¢? + Dog3
3p(p + 2)(p® — 1)a2Bp}

where Ap = 6[p3(1 —c)(p+1)(p+2)+201 — (p+2)pa], Bo = —a(p—1)psdo,

Co = 3p(p — 1)o”p3[2p1 — (p + 2)p2], Do = —2pp10°pd(p® — 1).

when p = -2, i.e., p3 = —2ps,

Ay +Bl¢+01¢2+6P1(1+3apz¢+3ang¢2) In(1+2ap9¢)

98a2p4 ' ’

y® = h(l + apag)' P + (1.2.11)

y? =h(1+ap2¢)3—
(1.2.12)
where A; = 11p; — 3p3(1 — ¢) —3p3, By = —9a(p3(1 — ¢) +pg —3p1p2), C1 =
902 p3(2p1 — p2);
when p = —1, ie., p3 = —p9,
Az+Bad+Co¢® + Dy +(Eo+ Fad+G2¢?) In(142ap20)
68a2p3

Y2 =h(14+opyp)?— ,

(1.2.13)
where Ay = —10p1 —6p2(1 — ¢) +9p2, Bz = a(—8p1ps — 12p3(1 — c) + 1202),

Cy = 80%p1p3, Dy = 40p1p}, Ep = 6py —12p1, Fy = 120(p2 — 201p0),

Ga = 6a?(p3 — 2p12);
when p =1, i.e., p3 = po,

(1860 p3)y” +apalda’ 05 8° +3apa (303 — 201) %+ (903(1 — ¢) — 18pa+12p1)¢]

—6(602(1 - ¢) — 3pg — 201)In(1 + aped) = h, (1.2.14)

where h is an arbitrary constant.

We see from (1.2.11) that if 1 —p = 2k, (k is an integer) or p is an irrational
1
number, then we must consider the case 1 + aped >0, ie., ¢ > ¢ = —7.
ap2

System (1.2.10) is a planar dynamical system defined in the 7-parameter
Space (a’ :3: S P1, P2, P3, g)

Second, we investigate the traveling wave equation of third order wave
equations (1.2.3) of KdV type. Substituting 5 = #(x — ct) into (1.2.3) and
letting y = ¢/(£), 2 = ¢’'(£), where “” is the derivative with respect to &, we

have the following 3-dimensional traveling wave system

@ _., W
df—_y’ df

=Z’
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dz _ _[eBlap,y® + (ps + oped)2) +0%p,8° + 028" +op+ (1 —)ly.

d¢ B+ ap,d+ a?p;d?)

(1.2.15)

There are two groups of parameter conditions (I) ps = 2(p; +p,) and (II) p, =
0 such that system (1.2.15) can be reduced to two 2-dimensional integrable

systems.
We only consider the case (I). Then, we obtain from (1.2.15) that

(108 + 56 + 56" + 520 (6%) + (s (99" + %aﬂ(ps —pa)((#)?Y

3930, + Bl Y + 5,8 ) = 0

- Integrating once with respect to £, we have the following traveling wave equa-
tion of (1.2.3)

80+ an + @)+ (3080, — ) + 070,69

1 1 1
+70°0,8" + 36%p,8° + So? + (1 - )¢ =0, (1.2.16)

where we take the integral constant g = 0. (1.2.16) is equivalent to the fol-
lowing 2-dimensional system

do
EE =Y,
@ _ _6a}8((p3 —pa) + 2a,07¢)y2 + 3a3p4¢4 + 4a2,01¢3 + 6a¢2 +12(1 — )¢
d¢ 128(1 + ap,¢ + o?p,¢?) '
(1.2.17)
‘Write that
S(¢9) = 1+ ap,¢ + a®p¢?,
F(¢) = f(8)¢ = (3a°p, 4" +40%p, ¢* + 600 + 12(1 — ¢)) 4.

Thus, (1.2.17) can be rewritten to the form

@ —y _d_y — ;601/8((/73 - pz) + 2ap7</>)y2 + F(¢) (1.2.18)

¢ 7 df 125(¢) ' ‘

Clearly, system (1.2.18) is a planar dynamical system defined in the 10-parameter
space (e, 3,¢,p,;),i = 1 — 7. Corresponding to different parameter subspace, it
has different rich and complicated dynamical behavior.

i
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The system (1.2.17) has a first integral for p2 —4dp, >0,

i 2
yzS'(¢);5Z exp | A are tanh | 22" 2%Ps9 + 29059
Py — 4p5

.{.% /S(¢)%—1F(¢) exp '<—A are” tanh (L%?%}f)) dé =h, (1.2.19)

2[:05 (pz — ps) + p2p7]

where A =
. Ps\/ Py —4ps
a4 2
¥25(¢)?s exp | —iA aretan Py 1 20959
V 4p5 - p2

; for pf —4p, <0,

Vdo; — p2

and for pf —4p, =0,
ﬂ;’l_
¥*(2 + opagp) % exp (

4[,02 (pz — ps) + 4p7])

P22+ ap,)
2 &7_7;;5’2% 4[.02 (pz B ps) + 4p7] .
5 / F(8)(2 + apag) exp ( s )dqs ~h. (1.2.21)

We see form (1.2.20) and (1.2.21) that to obtain an explicit integral formula
for general parameters P, 1 =1—=17, 1t is very difficult.

Finally, we consider the traveling wave equation of (1.2.7). Substituting
1= ¢(z—ct) into (1.2.7) and letting y = ¢ (£), similarly, we have the following
two order equation

[(ﬂ — )+ jav+ vuals? + uv202(¢')2J #'+(1- 96 + 308 + pa®p?

+él/a(¢')2 +uvalp(¢)? + g = 0, (1.2.22)

where g is an integral constant. This equation is equivalent to the 2-dimensi-
onal system

1 1
do dy 9 +(1—-c)p + §a¢2 + pa? ¢ + gvayz + pral dy?

==Y =

1
dg dg (6 =)+ 3006 + vpa?d? + pv2ay?

i

(1.2.23)



