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4 Introduction

Introduction

In the present essay, we attempt to convey some idea of the skeleton of
topology, and of various topological concepts. It must be said at once that,
apart from the necessary minimum, the subject-matter of this survey does
not include that subdiscipline known as “general topology” — the theory of
general spaces and maps considered in the context of set theory and general
category theory. (Doubtless this subject will be surveyed in detail by others.)
With this qualification, it may be claimed that the “topology” dealt with in the
present survey is that mathematical subject which in the late 19th century was
called Analysis Situs, and at various later periods separated out into various

» «

subdisciplines: “Combinatorial topology”, “Algebraic topology”, “Differential
(or smooth) topology”, “Homotopy theory”, “Geometric topology”.

With the growth, over a long period of time, in applications of topology to
other areas of mathematics, the following further subdisciplines crystallized
out: the global calculus of variations, global geometry, the topology of Lie
groups and homogeneous spaces, the topology of complex manifolds and alge-
braic varieties, the qualitative (topological) theory of dynamical systems and
foliations, the topology of elliptic and hyperbolic partial differential equations.
Finally, in the 1970s and 80s, a whole complex of applications of topological
methods was made to problems of modern physics; in fact in several instances
it would have been impossible to understand the essence of the real physical
phenomena in question without the aid of concepts from topology.

Since it is not possible to include treatments of all of these topics in our
survey, we shall have to content ourselves here with the following general
remark: Topology has found impressive applications to a very wide range of
problems concerning qualitative and stability properties of both mathematical
and physical objects, and the algebraic apparatus that has evolved along with
it has led to the reorientation of the whole of modern algebra.

The achievements of recent years have shown that the modern theory of
Lie groups and their representations, along with algebraic geometry, which
subjects have attained their present level of development on the basis of an
ensemble of deep algebraic ideas originating in topology, play a quite different
role in applications: they are applied for the most part to the exact formu-
laic investigation of systems possessing a deep internal algebraic symmetry.
In fact this had already been apparent earlier in connexion with the exact so-
lution of problems of classical mechanics and mathematical physics; however
it became unequivocally clear only in modern investigations of systems that
are, in a certain well-defined sense, integrable. It suffices to recall for instance
the method of inverse scattering and the (algebro—geometric) finite-gap in-
tegration of non-linear field systems, the celebrated solutions of models of
statistical physics and quantum field theory, self-dual gauge fields, and string
theory. (One particular aspect of this situation is, however, worthy of note,
namely the need for a serious “effectivization” of modern algebraic geometry,
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which would return the subject in spirit to the algebraic geometry of the 19th
century, when it was regarded as a part of formulaic analysis.

This survey constitutes the introduction to a series of essays on topology,
in which the development of its various subdisciplines will be expounded in
greater detail.

Introduction to the English Translation

This survey was written over the period 1983-84, and published (in Russian)
in 1986. The English translation was begun in 1993. In view of the appearance
in topology over the past decade of several important new ideas, I have added
an appendix summarizing some of these ideas, and several footnotes, in order
to bring the survey more up-to-date.

I am grateful to several people for valuable contributions to the book: to M.
Stanko, who performed a huge editorial task in connexion with the Russian
edition; to B. Botvinnik for his painstaking work as scientific editor of the
English edition, in particular as regards its modernization; to R. Burns for
making a very good English translation at high speed; and to C. Shochet for
advice and help with the translation and modernization of the text at the
University of Maryland. I am grateful also to other colleagues for their help
with modernizing the text.

Sergei P. Novikov,
November, 1995

Chapter 1
The Simplest Topological Properties

Topology is the study of topological properties or topological invariants of
various kinds of mathematical objects, starting with rather general geometri-
cal figures. From the topological point of view the name “geometrical figures”
signifies: general polyhedra (polytopes) of various dimensions (complezes); or
continuous or smooth “surfaces” of any dimension situated in some Euclidean
space or regarded as existing independently (manifolds); or sometimes sub-
sets of a more general nature of a Euclidean space or manifold, or even of an
infinite-dimensional space of functions. Although it is not possible to give a
precise general definition of “topological property” (“topological invariant”)
of a geometrical figure (or more general geometrical structure), we may de-
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scribe such a property intuitively as one which is, generally speaking, “stable”
in some well-defined sense, i.e. remains unaltered under small changes or de-
formations (homotopies) of the geometrical object, no matter how this is given
to us. For instance for a general polytope (compler) the manner in which the
polytope is given may be, and often is, changed by means of an operation
of subdivision, whereby each face of whatever dimension is subdivided into
smaller parts, and so converted into a more complex polyhedron, the subdi-
vision being carried out in such a way as to be compatible on that portion
of their boundaries shared by each pair of faces. In this way the whole poly-
hedron becomes transformed formally into a more complicated one with a
larger number of faces of each dimension. The various topological properties,
or numerical or algebraic invariants, should be the same for the subdivided
complex as for the original.

The simplest examples. 1) Everyone is familiar with the elementary result
called “Euler’s Theorem”, which, so we are told, was in fact known prior to
Euler:

For any closed, convez polyhedron in 3-dimensional Euclidean space R3, the
number of vertices less the number of edges plus the number of (2-dimensional)
faces, is 2. , .

Thus the quantity V — E + F is a topological invariant in that it is the
same for any subdivision of a convex polyhedron in R3.

2) Another elementary observation of a topological nature, also dating back
to Euler, is the so-called “problem of the three pipelines and three wells” .
Here one is given three points a;, as, a3 in the plane R? (three “houses”) and
three other points A;, Az, A3 (“wells”), and it turns out that it is not possible
to join each house a; to each well A; by means of a non-self-intersecting path
(“pipeline”) in such a way that no two of the 9 paths intersect in the plane.
(Of course, this is possible in R3.) In topological language this conclusion may
be rephrased as follows: Consider the one-dimensional complex (or graph) con-
sisting of 6 vertices a;, Aj, and 9 edges zj, ¢, j = 1,2, 3, where the “boundary”
of each edge, denoted by 9z;;, is given by 0z;; = {a;, Aj}. The conclusion is
that this one-dimensional complex cannot be situated in the plane R? without
incurring self-intersections. This represents a topological property of the given
complex. O

These two observations of Euler may be considered as the archetypes of the
basic ideas of combinatorial topology, i.e. of the topological theory of polyhe-
dra and complexes established much later by Poincaré. It is important to bear
in mind that the use of combinatorial methods to define and investigate topo-
logical properties of geometrical figures represents just one interpretation of
such properties, providing a convenient and rigorous approach to the formula-
tion of these concepts at the first stage of topology, though of course remaining
useful for certain applications. However those same topological properties ad-
mit of alternative formulations in various different situations, for instance in
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the contexts of differential geometry and mathematical analysis. For an ex-
ample, let us return to the general convex polyhedron of Example 1 above.
By smoothing off its corners and edges a little, we obtain a general smooth,
closed, convex surface in R3, the boundary of a convex solid. Denote this sur-
face by M2. At each point z of this surface the Gaussian curvature K(z) is
defined, as also the area-element do(z), and we have the following formula of
Gauss:

L [ [ k@do() =2. (0.1)
27 s 3

In the sequel it will emerge that this formula reflects the same topological
property as does Euler’s theorem concerning convex polyhedra. (Euler’s the-
orem can be deduced quickly from the Gauss formula (0.1) by continuously
deforming a suitable surface into the given convex polyhedron and taking
into account the relationship between the integral of the Gaussian curvature
and the solid angles at the vertices.) Note that the formula (0.1) holds also
for nonconvex closed surfaces “without holes”. A third interpretation, as it
turns out, of the same general topological property (which we have still not
formulated!) lies hidden in the following observation, attributed to Maxwell:
Consider an island with shore sloping steeply away from the island’s edge into
the sea, and whose surface has no perfectly planar or linear features; then the
number of peaks plus the number of pits less the number of passes is exactly
1. This may be easily transformed into an assertion about closed surfaces in
R3 by formally extending the island’s surface underneath so that it is convex
everywhere under the water (i.e. by imagining the island to be “floating”, with
a convex underside satisfying the same assumption as the surface). The result-
ing floating island then has one further pit, namely the deepest point on it.
We conclude that for a closed surface in R3 satisfying the above assumption,
the number of peaks (points of locally maximum height) plus the number of
pits (local minimum points) less the number of passes (saddle points) is equal
to 2, the same number as appears in both Euler’s theorem and the Gauss
formula (0.1) for surfaces without holes.

What if the polyhedron or closed surface in R? or floating island is more
complicated? With an arbitrary closed surface M? in R® we may associate an
integer, its “genus” g > 0, naively interpreted as the “number of holes”. Here
we have the Gauss-Bonnet formula

% / / K{z)do(z) = 2 — 2, (0.2)
M2

and the theorems of Euler and Maxwell become modified in exactly the same
way: the number 2 is replaced by 2 — 2g. Since Poincaré it has become clear
that these results prefigure general relationships holding for a very wide class
of geometrical figures of arbitrary dimension.
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Gauss also discovered certain topological properties of non-self-intersecting
(i.e. simple) closed curves in R3. It is well known that a simple, closed, con-
tinuous (or if you like smooth, or piecewise smooth, or even piecewise linear)
curve separates the plane R? into two parts with the property that it is im-
possible to get from one part to the other by means of a continuous path
avoiding the given curve. The ideally rigorous formulation of this intuitively
obvious fact in the context of an explicit system of axioms for geometry and
analysis carries the title “The Jordan Curve Theorem” (although of course
in fact it is, in somewhat simplified form, already included in the axiom sys-
tem; if one is not concerned with economy in the axiom system, then it might
just as well be included as one of the axioms). The same conclusion (as for
a simple, closed, continuous curve) holds also for any “complete” curve in
R?, i.e. a simple, continuous, unboundedly extended, non-closed curve both
of those ends go off to infinity, without nontrivial limit points in the finite
plane. This principle generalizes in the obvious way to n-dimensional space:
a closed hypersurface in R™ separates it into two parts. In fact a local version
of this principle is basic to the general topological definition of dimension (by
induction on n). :

There is however another less obvious generalization of this principle, hav-
ing its most familiar manifestation in 3-dimensional space R3. Consider two
continuous (or smooth) simple closed curves (loops) in R? which do not in-
tersect:

n(t) = (z1(t), 23(1), 23(t)), 7t +27) = m(2),

12(r) = (24(7), 23(7),23(r)) , (7 + 27) = (7).

Consider a “singular disc” D; bounded by the curve 7;, i.e. a continuous
map of the unit disc into R®: & = z2(r,¢), i = 1,2, a = 1,2,3, where
0<r<1, 0<¢<2m sending the boundary of the unit disc onto v;:

i (r, Wr=1 = 2{(¢), @ =1,2,3,
where ¢ =tfori=1,and ¢ =7 for: = 2.

Definition 0.1 Two curves v; and v in R3 are said to be nontrivially
linked if the curve v, meets every singular disc D; with boundary v; (or,
equivalently, if the curve v, meets every singular disc D, with boundary ;).

Simple examples are shown in Figure 1.1. In n-dimensional space R™ certain
pairs of closed surfaces may be linked, namely submanifolds of dimensions p
and g where p + ¢ = n — 1. In particular a closed curve in R? may be linked
with a pair of points ( a “zero-dimensional surface”) — this is just the original
principle that a simple closed curve separates the plane.

Gauss introduced an invariant of a link consisting of two simple closed
curves 71, 72 in R3, namely the signed number of turns of one of the curves
around the other, the linking coefficient {y1,7v2} of the link. His formula for
this is
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) Q) \&

(a) Unlinked curves (b) Linking coefficient 1 (¢) Linking coefficient 4

Fig. 1.1
o L4 4l dn®),m — )
N = ? = —-f 9 0.3
o} =g @ - 1@P ©3
72
where [, | denotes the vector (or cross) product of vectors in R3 and ( , )

the Euclidean scalar product. Thus this integral always has an integer value
N. If we take one of the curves to be the z—axis in R and the other to lie in
the (z,y)-plane, then the formula (0.3) gives the net number of turns of the
plane curve around the z-axis.

It is interesting to note that the linking coefficient (0.3) may be zero even
though the curves are nontrivially linked (see Figure 1.2). Thus its having
non-zero value represents only a sufficient condition for nontrivial linkage of
the loops.

Elementary topological properties of paths and homotopies between them
played an important role in complex analysis right from the very beginning
of that subject in the 19th century. They without doubt represent one of

(U

Fig. 1.2. The linking coefficient = 0, yet the curves
are non-trivially linked
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the most important features of the theory of functions of a complex variable,
instrumental to the effectiveness and success of that theory in all of its appli-
cations. A complex analytic function f(z) is often defined and single-valued
only in a part of the complex plane, i.e. in some region U C R? free of poles,
branch points, etc. The Cauchy integral around each closed contour v C U
yields a “topological” functional of the contour:

Ip(y) = ff(z)dz, (0.4)

in the sense that the integral remains unchanged under continuous homotopies
(deformations) of the curve < within the region U, i.e. by deformations of v
avoiding the singular points of the function. It is this very latitude — the
possibility of deforming the closed contour without affecting the integral —
which opens up enormous opportunities for varied application.

More complicated topological phenomena appeared in the 19th century —
in essence beginning with Abel and Riemann — in connexion with the inves-
tigation of functions f(z) of a complex variable, given only implicitly by an
equation

F(Z,‘U)) =0, w= f(2), (05)

or else by means of analytic continuation throughout the plane, of a function
originally given as analytic and single-valued only in some portion of the
plane. The former situation arises in especially sharp form, as became clear
after Riemann and Poincaré, in the context of Abel’s resolution of the well-
known problem of the insolubility of general algebraic equations by radicals,
where the function F(z,w) is a polynomial in two variables:

F(z,w) = w" 4+ a1(2)w™ 1 + - + an(2) = 0. (0.6)

Such a polynomial equation has, in general, finitely many isolated branch
points z1, - - -, zm, in the plane, away from which it has exactly n distinct roots
w;j(z) , z # zx (k =1,...,m). Here the region U is just the plane R? with the
m branch points removed:

U=R*\{z1,...,2m}.

It turns out that in general the branch points cannot be merely ignored, for the
following reason. In some neighborhood of each point zy that is not a branch
point, the equation (0.6) determines exactly n distinct functions w;(z) such
that F'(z,w;(z)) = 0. If, however, we attempt to continue any one w; of these
functions analytically outside that neighborhood, we encounter a difficulty of
the following sort: if we continue w; along a path which goes round some of
the branch points and back to the point 29, it may happen that we obtain
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Fig. 1.3

nontrivial “monodromy”, i.e. that we arrive at one of the other solutions at
20
ws(20) # wj(20), 8 # 3.

Proceeding more systematically, consider all possible loops v(t), a < t < b,
in the region U = Ry \ {21, -, 2m}, with ¥(a) = y(b) = 2o. Each such loop
determines a permutation of the branches of the function w(z): if we start at
the branch given by w;(z) and continue around the loop from a to b, then we
arrive when ¢ = b at the branch defined by w;, so that the loop () determines
a permutation j — s of the branches (or sheets) above zp:

Y=oy, 04(7) =s.
The inverse path y~! (i.e. the path traced backwards from b to a) yields the
inverse permutation 0,~! : s — 7, and the superposition v; - 2 of two paths
T (traced out from time a to time b) and -y, (from b to ¢), i.e. the path ob-
tained by following v, by <2, corresponds to the product of the corresponding
permutations:

Imiy2 = Ty OOy, oy-1 = (oy) 7" (0.7)

In the general, non-degenerate, situation the permutations of the form Oy
generate the full symmetric group of permutations of n symbols. (This is the
underlying reason for the general insolubility by radicals of the algebraic equa-
tion (0.6) for n >5.) To see this, note that the “basic” path v;, j = 1,---,m,
which starts from zp, encircles the single branch point z;, and then proceeds
back to 29 along the same initial segment (see Figure 1.3) corresponds, in
the typical situation of maximally non-degenerate branch points, to the inter-
change of two sheets (i.e. 0,, is just a transposition of two indices). The claim
then follows from the fact that the transpositions generate all permutations.

It is noteworthy that the permutation o, is unaffected if the loop 7 is
subjected to a continuous homotopy within U, throughout which its begin-
ning and end remain fixed at z. This is analogous to the preservation of
the Cauchy integral under homotopies (see (0.4) above), but is algebraically
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more complicated: the dependence of the permutation o, on the path v is
non-commutative, in contrast with the Cauchy integral:

Tyyma = Oy OOy # Onpmys I 72) = Ir(m) + I (72)- (0.8)

This sort of consideration leads naturally to a group with elements the ho-
motopy classes of continuous loops v(t) beginning and ending at a particular
point 29 € U, for any region, or indeed any manifold, complex or topological
space U. This group is called the fundamental group of U (with base point zp)
and is denoted by 71(U, z0). The Riemann surface defined by F(z,w) = 0 thus
gives rise to a homomorphism - monodromy — from the fundamental group
to the group of permutations of its “sheets”, i.e. the branches of the function
w(z) in a neighborhood of z = 2q:

o:7m(U, 2) = Sy, (0.9)

where S,, denote the symmetric group on n symbols, and U is as before - a
region of R2.

For transcendental functions F', on the other hand, the equation F(z,w) =
0 may determine a many-valued function w(z) with infinitely many sheets
(n = 00). Here the simplest example is

F(z,w)=expw—-2=0, U=R?\0, w=Inz.

In this example the sheets are numbered in a natural way by means of the
integers: taking 2o = 1, we have wy = Ilnz¢ = 2mik, where k ranges over the
integers. The path v(t) with || = 1, v(0) = y(27) = 1, going round the point
z =0 in the clockwise direction exactly once, yields the monodromy v — o,
oy(k) =k —1.

An interesting topological theory where the non-abelianness of the funda-
mental group 7(U, z¢) plays an important role is that of knots, i.e. smooth
(or, if preferred, piecewise smooth, or piecewise linear) simple, closed curves
y(t) C R3, y(t + 27) = 4(t), or, more generally, the theory of links, as intro-
duced above, a link being a finite collection of simple, closed, non-intersecting
curves 1, ...,v C R3. For k > 1, one has the matrix with entries the linking
coefficients {v;,v;}, ¢ # j, given by the formula (0.3), which however does not
determine all of the topological invariants of the link. In the case k = 1, that
of a knot, there is no such coefficient available. Let 4 be a knot and U the
complementary region of R3:

U=R3\~. (0.10)

It turns out that the fundamental group n1(U, 29), where 2, is any point of
U, is abelian precisely when the given knot « can be deformed by means of a
smooth homotopy-of-knots (i.e. by an “isotopy”, as it is called) into the trivial
knot, i.e. into the unknotted circle S! ¢ R? C R3, where the circle S lies in



