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Preface

This book consists of three parts, rather different in level and purpose:

The first part was originally written for quantum chemists. It describes the
correspondence, due to Frobenius, between linear representations and charac-
ters. This is a fundamental result, of constant use in mathematics as well as in
quantum chemistry or physics. I have tried to give proofs as elementary as
possible, using only the definition of a group and the rudiments of linear algebra.
The examples (Chapter 5) have been chosen from those useful to chemists.

The second part is a course given in 1966 to second-year students of I’Ecole
Normale. It completes the first on the following points:
(a) degrees of representations and integrality properties of characters (Chapter 6);
(b) induced representations, theorems of Artin and Brauer, and applidations

(Chapters 7-11);

(c) rationality questions (Chapters 12 and 13).
The methods used are those of linear algebra (in a wider sense than in the first
part): group algebras, modules, noncommutative tensor products, semisimple
algebras.

The third part is an introduction to Brauer theory: passage from characteristic 0
to characteristic p (and conversely). 1 have freely used the language of abelian
categories (projective modules, Grothendieck groups), which is well suited to
this sort of question. The principal results are:

(a) The fact that the decomposition homomorphism is surjective: all irreducible
representations in characteristic p can be lifted ‘‘virtually’’ (i.e., in a suitable
Grothendieck group) to characteristic 0.

(b) The Fong—Swan theorem, which allows suppression of the word **virtually’’
in the preceding statement, provided that the group under consideration is
p-solvable.

I have also given several applications to the Artin representations.
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CHAPTER 1

Generalities on
linear representations

1.1 Definitions

Let V be a vector space over the field C of complex numbers and let
GL(V) be the group of isomorphisms of V onto itself. An element a of GL(V)
is, by definition, a linear mapping of V into V which has an inverse a’l;
this inverse is linear. When V has a finite basis (e,) of n elements, each linear
map a: V =V is defined by a square matrix (a;) of order n. The
coefficients a; are complex numbers; they are obtained by expressing the
images a(e;) in terms of the basis (e;):

ale;) = ? a;e;.

Saying that a is an isomorphism is equivalent to saying that the
determinant det(a) = det(a;) of a is not zero. The group GL(V) is thus
identifiable with the group of invertible square matrices of order n.

Suppose now G is a finite group, with identity element 1-and with
composition (s, ) > st. A linear representation of G in V is a homomor-
phism p from the group G into the group GL(V). In other words, we
associate with each element s € G an element p(s) of GL(V) in such a way
that we have the equality

o(st) = p(s) - p(t) fors,t € G.
[We will also frequently write p, instead of p(s).] Observe that the preceding
formula implies the following:
o) = 1. ols™) = o)™

When p is given, we say that V is a representation space of G (or even
simply, by abuse of language, a representation of G). In what follows, we
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Chapter 1: Representations and characters

restrict ourselves to the case where V has finite dimension. This is not a very
severe restriction. Indeed, for most applications, one is interested in dealing
with a finite number of elements x; of V, and can always find a subrepresen-
tation of V (in a sense defined later, cf. 1.3) of finite dimension, which
contains the x;: just take the vector subspace generated by the images p,(x;)
of the x;.

Suppose now that V has finite dimension, and let »n be its dimension; we
say also that n is the degree of the representation under consideration. Let
(e)) be a basis of V, and let R be the matrix of p, with respect to this basis.
We have

det(R,)#0, R, =R, R, ifs,t€G.

If we denote by £;(s) the coefficients of the matrix R, the second formula
becomes

5k(st) = § 7i(s) * re (9).

Conversely, given invertible matrices R, = (7;(s)) satisfying the preced-
ing identities, there is a corresponding linear representation p of G in V;
this is what it means to give a representation “in matrix form.”

Let p and p’ be two representations of the same group G in vector spaces
V and V'. These representations are said to be similar (or isomorphic) if
there exists a linear isomorphism 7; V — V' which “transforms” p into p’,
that is, which satisfies the identity

rop(s) =p'(s)eor foralls € G.

When p and p’ are given in matrix form by R and R respectively, this
means that there exists an invertible matrix T such that

T-R,=R,-T, foralls € G,

which is also written R, = T - R, - T~!. We can identify two such represen-
tations (by having each x € V correspond to the element 7(x) € V’); in
particular, p and p’ have the same degree.

1.2 Basic examples

(a) A representation of degree 1 of a group G is a homomorphism
p: G — C*, where C* denotes the multiplicative group of nonzero complex
numbers. Since each element of G has finite order, the values p(s) of p are
roots of unity; in particular, we have |p(s)| = 1.

If we take p(s) = 1 for all s € G, we obtain a representation of G which
is called the unir (or trivial) representation.

(b) Let g be the order of G, and let V be a vector space of dimension g,
with a basis (¢, ), indexed by the elements ¢ of G. For s € G, let p, be

4



1.3: Subrepresentations

the linear map of V into V which sends e, to e,,; this defines a linear
representation, which is called the regular representation of G. Its degree is
equal to the order of G. Note that e, = p,(e;); hence note that the images
of ¢ form a basis of V. Conversely, let W be a representation of G
containing a vector w such that the p.(w), s € G, form a basis of W; then
W is isomorphic to the regular representation (an isomorphism r: V - W
is defined by putting r{e;) = p,(w)).

{c) More generally, suppose that G acts on a finite set X, This means that,
for each s € G, there is given a permutation x — sx of X, satisfying the
identities

Ix = x, s(tx) = (s)x ifs,r € G x € X

Let V be a vector space having a basis (e, ), cx indexed by the elements of
X. For s € G let p, be the linear map of V into V which sends e, to e,;
the linear representation of G thus obtained is called the permuration
representation associated with X.

1.3 Subrepresentations

Let p: G —» GL(V) be a linear representation and let W be a vector
subspace of V. Suppose that W is stzable under the action of G (we say also
“invariant™), or in other words, suppose that x € W implies p,x € W for
all s € G. The restriction p}v of p; to W is then an isomorphism of W onto
itself, and we have pY = pV - pV. Thus p¥: G - GL(W) is a linear
representation of G in W; W is said to be a subrepresentation of V.

ExaMpLE. Take for V the regular representation of G [cf. 1.2 (b)], and let
W be the subspace of dimension 1 of V generated by the element
x = 3,ec e We have p,x = x for all s € G; consequently W is a
subrepresentation of V, isomorphic to the unit representation. (We will
determine in 2.4 all the subrepresentations of the regular representation.)

Before going further, we recall some concepts from linear algebra. Let V
be a vector space, and let W and W’ be two subspaces of V. The space V
is said to be the direct sum of W and W’ if each x € V can be written
uniquely in the form x = w + w/, with w € W and w' € W’; this amounts
to saying that the intersection W N W’ of W and W’ is 0 and that
dim(V) = dim(W) + dim(W’). We then write V = W & W’ and say that
W’ is a complement of W in V. The mapping p which sends each x € V to
its component w € W is called the projection of V onto W associated with
the decomposition V = W & W’; the image of p is W, and p(x) = x for
Xx € W; conversely if p is a linear map of V into itself satisfying these two
properties, one checks that V is the direct sum of W and the kernel W’ of p

5



Chapter 1: Representations and characters

(the set of x such that px = 0). A bijective correspondence is thus
established between the projections of V onto W and the complements of W
in V.

We return now to subrepresentations:

Theorem 1. Let p: G — GL(V) be a linear representation of G in V and let
W be a vector subspace of V stable under G. Then there exists a complement
WO of W in V which is stable under G.

Let W' be an arbitrary complement of W in V, and let p be the
corresponding projection of V onto W. Form the average p° of the
conjugates of p by the elements of G:

P = ! S po-pp! (g being the order of G).
8 eG

Since p maps V into W and p, preserves W we see that p° maps V into W;
we have p,‘l x € W for x € W, whence

P'Pf', =p,°lx, p,-p-p,"x=x, and Px = x.

Thus p is a projection of V onto W, corresponding to some complement
WO of W. We have moreover

px-po=p°-pJr foralls € G.

Indeed, computing p, - p° - p;’!, we find:

- 1 1 - 1 -
R A P A N A P N A =7’
If now x € W% and s € G we have p%x = 0, hence p°- psX = pg - pOx
= 0, that is, p,x € WO which shows that WO is stable under G, and
completes the proof. a

Remark. Suppose that V is endowed with a scalar product (x| y) satisfying
the usual conditions: linearity in x, semilinearity in y, and (x|x) > 0 if
x # 0. Suppose that this scalar product is invariant under G, i.e., that
(ps xlp,») = (x| y); we can always reduce to this case by replacing (x| y) by
36 (o, xlp,y). Under these hypotheses the orthogonal complement W° of W
in V is a complement of W stable under G; another proof of theorem 1 is
thus obtained. Note that the invariance of the scalar product (x| y) means
that, if (¢;) is an orthonormal basis of V, the matrix of p, with respect to this
basis is a unitary matrix.

Keeping the hypothesis and notation of theorem 1, let x € V and let w
and w® be its projections on W and WP We have x = w + w®, whence
p.x = pw + pw®, and since W and W° are stable under G, we have
pw € W and pw® € WP thus pw and pw? are the projections of p,x.
It follows the representations W and W9 determine the representation V.
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1.4: Irreducible representations

We say that V is the direct sum of W and WO and write V = W & WO An
element of V is identified with a pair (w, w®) with w € W and w® € WO If
W and W are given in matrix form by R, and R%, W @ WP is given in

matrix form by
(Rs 0 ) .
0 RO/

The direct sum of an arbitrary finite number of representations is defined
similarly. :

1.4 Irreducible representations

Let p: G — GL(V) be a linear representation of G. We say that it is
irreducible or simple if V is not 0 and if no vector subspace of V is stable
under G, except of course 0 and V. By theorem 1, this second condition is
equivalent to saying V is not the direct sum of two representations (except for
the trivial decomposition V = 0 @ V). A representation of degree 1 is
evidently irreducible. We will see later (3.1) that each nonabelian group
possesses at least one irreducible representation of degree > 2.

The irreducible representations are used to construct the others by means
of the direct sum:

Theorem 2. Every representation is a direct sum of irreducible representations.

Let V be a linear representation of G. We proceed by induction on
dim (V). If dim(V) = 0, the theorem is obvious (0 is the direct sum of the
empty family of irreducible representations). Suppose then dim(V) > 1. If
V is irreducible, there is nothing to prove. Otherwise, because of th. 1, V
can be decomposed into a direct sum V' & V” with dim(V’) < dim(V)
and dim(V”) < dim(V). By the induction hypothesis V' and V” are direct
sums of irreducible representations, and so the same is true of V. a

Remark. Let V be a representation, and let V=W, & :--® W, be a
decomposition of V into a direct sum of irreducible representations. We can
ask if this decomposition is unique. The case where all the p, are equal to 1
shows that this is not true in general (in this case the W; are lines, and we
have a plethora of decompositions of a vector space into a direct sum of
lines). Nevertheless, we will see in 2.3 that the number of W, isomorphic to
a given irreducible representation does not depend on the chosen decom-
position.

1.5 Tensor product of two representations

Along with the direct sum operation (which has the formal properties of
an addition), there is a “multiplication”: the rensor product, sometimes
called the Kronecker product. It is defined as follows:



