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4 Introduction

Introduction

This survey continues the series of surveys devoted to the classification of al-
gebraic varieties (Shokurov (1988), Shokurov (1989), Danilov (1988) Danilov
(1989), Iskovskikh-Shafarevich (1989), Kulikov-Kurchanov (1989)). It deals
with Fano varieties of dimension three and higher. The general classification
problem was stated and partly advanced in the classical research of Italian
geometers. In the last two decades the classification theory developed rapidly
thanks to the new Mori theory of minimal models. It is based on the re-
markable ideas and results due to S. Mori on extremal properties of cones of
effective one-dimensional cycles (Mori (1982), Mori (1988)), using which the
concept of a minimal model playing the central role in the classical birational
classification of surfaces (see Iskovskikh-Shafarevich (1989)) was extended to
varieties of higher dimension. Within the framework of the theory arises the
category of projective varieties with some admissible singularities: terminal
canonical, log canonical and others.

A minimal model in the sense of Mori is defined to be a normal projec-
tive variety with a numerically effective canonical divisor. According to the
Mori Minimal Model Program, which is completely carried out in dimen-
sions < 3 and partly in dimensions > 4 (see Mori (1982), Reid (1983a),
Kawamata-Matsuda-Matsuki (1987), Clemens-Kollar-Mori (1988), Kollar et
al. (1992), Wilson (1987a)), every irreducible algebraic variety over an alge-
braically closed field of characteristic zero is birationally equivalent either to a
minimal model (if its Kodaira dimension > 0) or to a fibration over a variety
of smaller dimension (in particular, over a point) with rational singularities
with the general fiber being a Fano variety (in this case the Kodaira dimension
of the initial variety equals —o0).

Therefore the Mori program establishes the important role that Fano vari-
eties play in the birational classification of algebraic varieties. They are defined
to be varieties with ample anticanonical class and form a subclass of varieties
of Kodaira dimension —oo.

The only one-dimensional Fano varieties are the projective line over an
algebraically closed field and a conic over an arbitrary field. Two-dimensional
Fano varieties are del Pezzo surfaces (see the survey of Iskovskikh-Shafarevich
(1989)).

In connection with the problems of rationality and unirationality, G. Fano
studied at the beginning of the century the class of varieties with canoni-
cal curve-sections (see Fano (1908), Fano (1915), Fano (1930), Fano (1931),
Fano (1936), Fano (1942), Fano (1947)). Contemporary authors continued
this study, taking for the definition of the class of varieties the ampleness of
the anticanonical sheaf. G. Fano did not restrict himself to considering only
nonsingular varieties, but for the present only nonsingular three-dimensional
Fano varieties are classified in contemporary works. Although the problems
of rationality and unirationality still remain important (and very difficult),
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at present it is the general problems of the structure theory that are of
prime interest, namely, the classification of Q-Fano varieties with admissi-
ble singularities in dimension three and higher, the problem of bounded-
ness of the degree, solved for nonsingular Fano varieties of any dimension
in Kollar-Miyaoka-Mori (1992c), Nadel (1991), Campana (1991a), the prob-
lems of uniruledness and rational connectedness, also solved for nonsingular
Fano varieties of any dimension (see Miyaoka-Mori (1986), Kollar-Miyaoka-
Mori (1992c), Campana (1992)), the study of Fano varieties with additional
structures (P"-bundles, toric varieties, and others; see Batyrev (1981), Demin
(1980), Szurek-Wisniewski (1990c), Wisniewski (1989b), Wisniewski (1993)).

There are several rather complete expositions of the classification theory
for nonsingular three-dimensional Fano varieties (see, for example, Iskovskikh
(1979a), Iskovskikh (1988), Murre (1982), Mori-Mukai (1986), Mori-Mukai
(1983a), Mukai (1992a)). Singular Fano varieties and Fano varieties of higher
dimension have been studied in the last decade.

The goal of the present survey is to encompass as far as possible these sep-
arate results and to highlight the main directions and methods of research.
We do not include in this survey the well-known (actually classical) results on
two-dimensional Fano varieties, that is, nonsingular del Pezzo surfaces (see, for
example, Nagata (1960), Manin (1972)), and on del Pezzo surfaces with canon-
ical (see Du Val (1934), Demazure (1980), Hidaka-Watanabe (1981), Brenton
(1980)) and log terminal singularities (see Alexeev (1988), Alexeev-Nikulin
(1989), Nikulin (1989a), Nikulin (1988), Nikulin (1989), Alexeev (1994b)). We
do not touch arithmetic results for Fano varieties (see Manin-Tsfasman (1986),
Batyrev-Manin (1990), Manin (1993)), and the few known results in charac-
teristic p > 0 (see Ballico (1989), Serpico (1980), Shepherd-Barron (1997)).
The ground field k is assumed to be algebraically closed and of characteristic
zero.

The Russian version of this survey was finished in 1995 and unfortunately
many works on this subject appearing later were not included in it.

The survey begins with a brief exposition of some points of the Mori theory
of minimal models of algebraic varieties, which assumes a central place in
contemporary algebraic-geometric research. This is the contents of Chapter 1.

In Chapter 2 we give the basic definitions and examples, and formulate
the simplest properties of Fano varieties which can be immediately deduced
from the definition and general theorems such as the Riemann-Roch theo-
rem, vanishing theorems etc. We also include in this chapter some general
results on equations defining varieties connected with Fano varieties (canoni-
cal curves, varieties of minimal degree, intersections of quadrics). At the end
of the chapter we reproduce some results on the existence of good divisors in
anticanonical linear systems and on their base locus.

Chapter 3 is devoted to the description of the results due to T. Fujita on
the classification of polarized del Pezzo varieties connected with n-dimensional
Fano varieties of index n — 1. We give also the proof of the main classification
theorem.
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In Chapter 4 we present the classification of three-dimensional Fano vari-
eties with Picard number p = 1. The classification is based on the general-
ization of the classical method due to G. Fano of a double projection from a
line, a conic, etc. with the use of Mori theory.

In Chapter 5 we describe the approach of N. P. Gushel and S. Mukai to the
classification of Fano varieties with p = 1 using vector bundles. The method
of vector bundles makes it possible to obtain a new proof of the classification
theorem for three-dimensional Fano varieties with p = 1. This was done in
Mukai (1988), Mukai (1989), Mukai (1992a), and in Gushel (1982), Gushel
(1983), Gushel (1992) (only for genus g = 6 and 8).

Results on the uniruledness, the rational connectedness and the bounded-
ness of the degree for n-dimensional Fano varieties are presented in chapter 6.

Chapter 7 is devoted to the classification of Fano varieties with p > 2. In
the first section we describe the Mori-Mukai classification of three-dimensional
Fano varieties with p > 2. In the second section we present some results related
to the classification of Fano varieties of higher dimension with p > 2.

The problems of rationality for Fano varieties are discussed in chapters 8-
10. We discuss briefly the basic methods for proving the non-rationality.
In Chapter 8 we consider the method of intermediate Jacobians due to
C. Clemens and Ph. Griffiths and the method connected with the Brauer
group due to D. Mumford and M. Artin. In Chapter 9 we consider the method
of factorization of birational maps (the classical Noether-Fano method and
its generalization in the context of Mori theory). In Chapter 10 we collect
the known general constructions of unirationality and rationality for Fano
varieties and some concrete results as well.

In Chapter 11 we note some generalizations of Fano varieties known to us,
describe some separate results not included in the main text, and give a list
of open questions and problems.

The classification tables for del Pezzo varieties and nonsingular three-
dimensional Fano varieties are placed in Chapter 12.

The first author worked on the final version of the survey during his visit
to the Universities of Pisa and Genova. He would like to express his deep
gratitude to the Departments of Mathematics and especially to Professors
F. Bardelli, I. Bauer, F. Catanese and M. Beltrametti for their hospitality
and the opportunity to work in excellent conditions. He also thanks the Ital-
ian Consiglio Nazionale delle Ricerche (CNR) for the financial support. The
second author thanks the fund “Pro Mathematica” for the financial support.
The present work was also partly financed by Grant No M30000 from the
International Science Foundation. and by the Russian foundation for funda-
mental researches (project 93-011-1539).

The authors would like to thank N. A. Valueva for her help in preparation
the manuscript.
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Chapter 1
Preliminaries

§1.1. Singularities

Let X be an irreducible normal projective variety of dimension dim X = d
over an algebraically closed field & of characteristic zero. In this survey we shall
use the following notation (see Kawamata-Matsuda-Matsuki (1987), Clemens-
Kolldr-Mori (1988)).

Zr(X) is the group of r-dimensional cycles on X, that is, the free abelian
group generated by closed irreducible subvarieties of dimension r,0 < r <
d — 1. In particular, Z;_1(X) is the group of Weil divisors on X.

Div(X) is the group of Cartier divisors on X. There is a natural injection
(since X is normal)

Div(X) & Z4-1(X) ,

the image consists of those divisors which locally in a neighborhood of every
point can be determined by one equation. Elements of the group Z;_;(X)®Q
are called Q-divisors, and elements of the group Div(X) ® Q are called Q-
Cartier divisors.

Pic(X) denotes, as usual, the Picard group, that is, the group of classes
of Cartier divisors with respect to linear equivalence. This group is naturally
isomorphic to the group of invertible sheaves (or, equivalently, line bundles)
on X up to isomorphism.

A Q-Cartier divisor D € Div(X)®Q is said to be big if h°(X, Ox(mD)) >
const - m¢ for (sufficiently large) m > 0 such that mD € Div(X).

A Q-Cartier divisor D € Div(X) ® Q is called nef (numerically effective) if
D-C > 0 for every complete curve C C X. The intersection number is defined
as a rational number in the following way: let m € Z be an integer such that
mD € Div(X); then

1
D.C:= - deg(Ox(mD)|c) -

For any invertible sheaf L € Pic(X), the degree deg(L|¢) is defined to be
equal to degv*L, where v: C — C is the normalization of the curve C.
Cycles 2,z € Z1(X) are said to be numerically equivalent, which is written
as 2 =2/, if L-z = L2 for every L € Pic(X). By duality, one can define
numerical equivalence in Pic(X). The pairing Pic(X) x Z;(X) — Z induces a
perfect pairing
NY(X)x N;(X)—R, (1.1.1)

where N1(X) := Pic(X)/(mod =) ® R, and Ny(X) := Z1(X)/(mod =) @ R.
For Pic(X)/(mod =) ® Q, we use the notation N§(X).
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Let w be a rational differential form of degree d on X. Then one can define
the Cartier divisor of this form (w)|y on the open dense smooth subset U =
X —Sing X (codim X > 2 because X is normal). It can be extended to a Weil
divisor on the whole X; the class of this Weil divisor is called canonical and
is denoted by K x or simply by K.

A variety X is called Gorenstein (or its singularities are called Gorenstein)
if it is Cohen-Macaulay, and the dualizing sheaf wy is invertible. In such a case
Kx € Pic(X), that is, K x is represented by a Cartier divisor (the converse in
general is not true, see Ishii (1987), Ishii (1991)). If mK x € Pic(X) for some
integer m, then X is called Q-Gorenstein. The minimal positive integer m
with this property is called the (Gorenstein) indez of Kx (or X). All smooth
varieties are, of course, Gorenstein.

Ezample 1.1.1. Let F; C P® be the Veronese surface, that is, the image of
P? in P° under the map determined by the complete linear system of conics
Op2(2), and let X C P be a cone over F;. Then Pic(X) = Z- H, where H is a
hyperplane section. Denote by £ C X the Weil divisor which is the cone over
the image of a line | € P? in Fy. Then ~Kx = 3E ¢ Pic(X), so the singularity
in the vertex is not Gorenstein. But 2Kx = —6F = —2H € Pic(X), which
means that X is Q-Gorenstein of index 2. Note that locally near the vertex, X
can be represented as C3/r, where r is the involution (z,y, z) — (—z, —y, —z).
The expression (dz A dy A dz)®2 = (dz? A dy? A d2?)®° /6422y22? defines a 2-
canonical form on X. If f: X — X is the blow-up of the vertex P € X, and
if F = f~'(P) ~ P? is the exceptional divisor, then X is nonsingular, and
Ky = f*Kx + }F.

Definition 1.1.2. A normal variety X s said to have at most canoni-
cal (respectively, terminal, log terminal, log canonical) singularities if it is
Q-Gorenstein, and for every resolution of singularities f: X' — X with excep-
tional divisors E; C X', the following conditions hold:

mKx: = f*(mKx) + Y _ a;E; (1.1.2)

(m is the indez of X ) with a; > 0 (respectively, a; > 0,5 > —1,% > —1).

Usually this formula is divided by m and is written as
* a;
Kx = f*(Kx) +ZaiEia Q; = Ez €Q,
where o; > 0 for canonical (respectively, a; > 0 for terminal, a; > —1 for log
terminal, and o; > —1 for log canonical) singularities. The numbers a; are
called discrepancies at E;; they depend only on X and the (proper images of)
divisors E;, that is, they do not depend on the choice of resolution.

Let wx = O(Kx) be the canonical (dualizing) sheaf. For any positive
integer ¢, we denote by wff(] the double dual sheaf of the sheaf w$§’ (it is taken
to kill torsion and co-torsion, see Reid (1980b)). Then wgz(] is a torsion-free



§1.1. Singularities 9

sheaf of rank 1: it is locally free if and only if ¢ = am for some integer a > 0,
where m is the index of Kx. If X has at most canonical singularities, and

f: X' — X is a resolution, then f, (wf?f) = w[)? for i > 0.
Proposition 1.1.3 (see, for example, Clemens-Kolldr-Mori (1988)).

(i) In dimension two, terminal points are nonsingular.

(ii) Two-dimensional canonical singularities are exactly the Du Val ones (they
are also called rational double points). Locally in the complex topology they
can be determined by one of the following equations:

An: zy+2"T1=0, n>1;

D,: 224+3%2+42""1=0, n>4;

Eg: z*+y°+2*=0; (1.1.3)
Er: 2+ +y2*=0;

Eg: z2+42+25=0.

Minimal resolutions of these singularities are described by the corresponding
Dynkin diagrams; irreducible exceptional curves are represented by vertices,
and two vertices are connected by an edge if the corresponding curves inter-
sect. The number of vertices of the diagram is equal to n.

There is a complete list of terminal singularities in dimension 3 (refer to
Mori (1985), Ried (1987), Kollar (1991)):

Theorem 1.1.4.

(i) Three-dimensional terminal singularities are isolated points.
(ii) A three-dimensional hypersurface (i. e. Gorenstein) singularity is terminal
if and only if it is isolated and is defined by an equation of the form:

g(x,y,z) + th(w,y,zvt) =0,

where g is one of the equations (1.1.3). Such singularities are usually
called (compound Du Val) cDV-points (see Reid (1980b), Ried (1987)).

(ili) Ewvery three-dimensional terminal singularity is a quotient of some hy-
persurface terminal singularity (which is called a canonical (m : 1)-cover,
where m is the index of Kx at the singular point) by some cyclic group.
The typical situation is:

(zy + f(z™,t) =0) C C4/Zm(1,—1,a,0), (a,m)=1,

where CN /Zm(ay, ...,an) denotes the quotient of CV by the cyclic group
action (z1,...,xn) — ((*1z1,...,(*NzN), and  is a primitive root of unity
of degree m. Exceptional cases can be written in the form:

(z* + f(y,2,t) = 0) C C*/Zum(a, b, c,d)

for some m < 4. There is a complete list of all possible cases.



10 Chapter 1. Preliminaries

(iv) Every three-dimensional terminal singularity can be deformed to a set
of terminal cyclic quotient singularities of the form C3/Z(1,-1,a),
{a,m)=1.

Remarks 1.1.5. (i) Two-dimensional log terminal singularities were stud-
ied in Brieskorn (1968). Iliev (1986), Kollar et al. (1992). They are exactly
quotient singularities of (C2,0) by finite group actions. For log canonical sin-
gularities, see Kawamata (1988), Kolldr et al. (1992).

(ii) The singularity in the vertex of a cone over the Veronese surface which
was considered in Example 1.1.1 is terminal of index 2: it is isomorphic to the
quotient singularity C3/Z4(1,1,1) (see, for example, Wilson (1987a)).

(iii) All log terminal (in particular, terminal or canonical) singularities of
any dimension are rational, that is, for some (every) resolution f: X' — X, the
equalities R' f,Ox' = 0,1 > 0, are true (see Elkik (1981), Kawamata-Matsuda-
Matsuki (1987)). Log canonical singularities are not necessarily rational even
in dimension 2 (see Kollar et al. (1992)).

(iv) Terminal singularities form the least possible class of singularities in-
volving which the Mori Minimal Model Program is stated and can be true
(as in dimension 3). Canonical singularities are exactly those which arise on
canonical models.

(v) In the general Minimal Model Program (Kawamata-Matsuda-Matsuki
(1987), Kolldr et al. (1992)), more general types of singularities are defined
and used. Namely, let D = 3 a;D; be a Q-divisor on a normal variety X (D;
are irreducible Weil divisors) such that Kx + D is a Q-Cartier divisor. Then
for every resolution f: X’ — X we have:

Kx = f"(Kx +D)+ Y o;E;, o;€Q, (1.1.4)

where E; are not necessarily only exceptional divisors.
A pair (X, D) or Kx + D is called:

terminal if a; > 0;

canonical if o; > 0

purely log terminal if a; > —1;
log canonical if o; > —1.

A pair (X, D) is called Kawamata log terminal if (X, D) is purely log ter-
minal, and a; < 1 for all 1.

The Q-divisor D =Y a; D', is called the boundary if 0 < o; < 1Vi.

The pair (X, D) is called a log variety, and Kx + D is called a log canonical
divisor.

In terms of discrepancies of only exceptional divisors, formula (1.1.4) can
be rewritten in the form

Kxi +(f).(D)=f(Kx +D)+ Y ouE;, o €Q,

where the star in the subscript denotes the proper image of D as a Weil divisor.
A resolution f: X’ — X is called a log resolution of the log variety (X, D) if
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irreducible components of the support Supp((f~*).(D)) are nonsingular and
intersect transversally. Refer to Shokurov (1992), Kollar et al. (1992) and
Kollar (1997) for different variants of the definition of log terminal objects in
this more general situation.

§1.2. On Numerical Geometry of Cycles

Let X be a normal projective variety of dimension d. A cycle z = }_n;z; €
Zi(X) is called effective if n; > 0 Vi. Recall that we denote the numerical
equivalence of 1-cycles with respect to intersections with Cartier divisors (and,
by duality, the numerical equivalence of Q-Cartier divisors) by the symbol =.

A variety X is called Q-factorial if some integral multiple of every Weil
divisor is a Cartier divisor, that is, if Z4_1(X) ® Q = Div(X) ® Q.

The following notation is standard (see Clemens-Kolldr-Mori (1988),
Kawamata-Matsuda-Matsuki (1987)):

N(X):=Z1(X)/(mod =) ®R;

NE(X) is the least convex cone in N(X) containing all effective 1-cycles;

NE is the closure of NE(X) in the real topology; this is the so-called Mori
cone of X;

NS(X) is the Néron-Severi group of classes of Cartier divisors with respect

to algebraic equivalence;
p(X) := rk(NS(X)) = dimg N(X) is the Picard number.

Note that a numerically effective Q-Cartier divisor D is big if and only
if D¢ > 0 (the self-intersection index of a Q-Cartier divisor is defined as a
rational number).

Assume now that X is Q-Gorenstein. A half-line R = R [z] C NE(X),
z € Z;(X) @ R is called an eztremal ray if:

(i) —Kx -z>0, and L
(ii) from z1 + 22 € R, 21,22 € NE(X) it follows that 21 € R and 23 € R; this
means that the ray R lies on the boundary of cone NE(X).

A rational curve C C X is called an eztremal curve if R4 {C] is an extremal
rayand 0 < —Kx - C <d+1.

The important invariant of an extremal ray is the number p(R) =
inf{—Kx - C | C C X is a rational curve whose numerical class is [C] € R}.
This number is called the length of the extremal ray R.

An extremal ray R is called numerically effective if C - D > 0 for every
effective irreducible Q-Cartier divisor D and a curve C such that [C] € R.

For every Q-Cartier divisor D, we set

NEp(X) = {2 € NE(X) | D -z >0} ;
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in particular, we shall call NEx(X) the positive part of the Mori cone, and
NE_g(X) = {z € NE(X) | Kx - z < 0} the negative part. By definition,
all extremal rays lie in the negative part of the Mori cone. The following
important result was proved by Kleiman (1962).

Theorem 1.2.1 (Kleiman’s criterion for ampleness). A Q-Cartier divisor
D on a variety X is ample if and only if D-z > 0 for every z € NE(X)—{0}.

For the anticanonical divisor —Kx on a three-dimensional variety X, the
ampleness criterion takes on the following simpler form.

Theorem 1.2.2 (Matsuki (1987)). Let X be a complete normal variety of
dimension 3 with at most canonical singularities. Assume that | — mKx|# 0
for some integer m > 0 (that is, k(—K x) > 0, where k(D) denotes the Kodaira
dimension of a divisor D, see the definition below). Then the divisor —Kx 1is
ample if and only if —Kx - C > 0 for every irreducible curve C € Z;(X).

The important notion in the Minimal Model Program is the numerical dimen-
sion of a numerically effective Q-Cartier divisor D € Div(X) ® Q:

v(D) := max{m | D™ # 0}.

If Kx is nef, then v(K x)'is called the numerical dimension of the variety X
and is often denoted by v(X). The numerical dimension is closely related to
the Kodaira dimension. Recall the definition of the latter.

For any Cartier divisor D € Pic(X), denote by cp,D|:X——*]P’dim1D|, as
usual, the rational map determined by the complete linear system |D|. The
Kodaira D-dimension (X, D) is defined as follows (it is also called the litaka
D-dimension):

K(X,D) = max{dim @, p((X)} if [mD]| # 0 for some integer m > 0;
T —00 otherwise.

We remark that (X, D) can be characterized by the property: there exist
a,8 > 0 and mg € Z, mg > 0, such that the following inequalities hold for
m > 0:

am” < h%(X, Ox(mmgD)) < fm" .

Let R(X,D):= @ H°(X,Ox(mD)) be a graded algebra with respect to
m>0
the tensor multiplication of sections; then

(transcendence degree of R(X,D)) —1 if R(X,D) # k;
—00 otherwise.

«x,0) = {

A divisor D € Div(X) is big if (X, D) =d = dim X.
The Kodaira dimension x(X) of X is defined to be equal to (X', Kx-),
where X' is any complete nonsingular variety birationally isomorphic to X



