Study smart with Student Consult

Abraham L. Kierszenbaum Laura L. Tres

An Introduction to Pathology

HISTOLOGY AND CELL BIOLOGY

An Introduction to Pathology

Fourth Edition

1600 John F. Kennedy Blvd. Ste 1800 Philadelphia, PA 19103-2899

HISTOLOGY AND CELL BIOLOGY: AN INTRODUCTION TO PATHOLOGY Copyright © 2016, 2012, 2007, 2002 by Saunders, an imprint of Elsevier Inc. ISBN: 978-0-323-31330-8

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

With respect to any drug or pharmaceutical products identified, readers are advised to check the most current information provided (i) on procedures featured or (ii) by the manufacturer of each product to be administered, to verify the recommended dose or formula, the method and duration of administration, and contraindications. It is the responsibility of practitioners, relying on their own experience and knowledge of their patients, to make diagnoses, to determine dosages and the best treatment for each individual patient, and to take all appropriate safety precautions.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Kierszenbaum, Abraham L., author.

Histology and cell biology: an introduction to pathology / Abraham L. Kierszenbaum, Laura L. Tres. -- Fourth edition. p.; cm.

ISBN 978-0-323-31330-8 (hardcover : alk. paper)

I. Tres, Laura L., author. II. Title.

[DNLM: 1. Histology. 2. Pathologic Processes. 3. Cell Biology. 4. Pathology. QZ 4]

RB25

616.07--dc23

2014038010

Content Strategist: Meghan Ziegler

Content Development Specialist: Joanie Milnes Publishing Services Manager: Anne Altepeter

Proiect Manager: Ted Rodgers Cover designer: Xiaopei Chen

Printed in Canada

Last digit is the print number: 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOK AID

Sabre Foundation

HISTOLOGY AND CELL BIOLOGY

An Introduction to Pathology

Fourth Edition

Abraham L. Kierszenbaum, M.D., Ph.D. Emeritus Medical (Clinical) Professor The Sophie Davis School of Biomedical Education The City University of New York New York, New York

Laura L. Tres, M.D., Ph.D.
Emeritus Medical (Clinical) Professor
The Sophie Davis School of Biomedical Education
The City University of New York
New York, New York

PREFACE

The fourth edition of *Histology and Cell Biology: An Introduction to Pathology* contains revisions and additions that strengthen the visual approach to learning histology within the context of cell biology and pathology introduced in the previous editions. New in the fourth edition are a greater emphasis on pathology topics and the online audiovisual version of the histology-oriented Concept Mappings. The combined histology-cell biology-pathology approach intends to prepare medical students for the forthcoming learning of pathophysiology and clinical medicine. The practice of medicine changes relentlessly as new knowledge becomes known. Future physicians can find in this book the basis for continuing education to better help their patients by constantly integrating basic and clinical sciences.

New in the fourth edition are a greater emphasis on pathology topics and the online audiovisual version of the histology-oriented Concept Mappings.

The visual approach presented in this book emerged from many years of practicing pathology and teaching cell biology, histology, and pathology to medical students. Through the years, it became clear the need to communicate and reinforce relevant concepts of histology and pathology to be mastered under increasing time constraints resulting from changes in the basic science curriculum in most medical schools. The focal point of the teaching approach is to provide medical students with an integrated method wherein the learning of normal structure and pathologic conditions can reinforce each other. The cell biology and pathology components, although not complete, provide the necessary foundation for further learning and integration with medical sciences. Pathology students and residents may find this book useful for refreshing basic concepts of histology and cell biology. Histology and pathology are visually oriented sciences, and the visual cues included in this book can facilitate interpretation opportunities in clinical practice.

The focal point of the teaching approach is to provide medical students with an integrated method wherein the learning of normal structure and pathologic conditions can reinforce each other.

Similar to the previous editions, the fourth edition consists of six parts. Part I brings together histology, cell biology, and general pathology within the context of the basic tissues. Chapter 3, Cell Signaling, is an uncommon section in a histology book. It serves to unify the concept that the study of tissues and organs cannot be separated from molecular biology and general pathology. Parts II through VI present several organ systems grouped by their most relevant function for the purpose of integration. Instructors and students may find the grouping of organs useful for teaching and learning. Teachers may find the material beneficial for delivering a lecture using the same or a different presentation sequence. In Part VI, Organ Systems: The Reproductive System, the chapter headings depart from the traditional designation to emphasize prominent functions. All the information is presented in a clear, concise, and student-friendly manner using color graphics and photographs that are meant to be studied. In some cases the graphics reiterate the concise text; in others they add new information complementing or extending the text. Several boxes dispersed in most of the chapters introduce students to clinical and pathologic conditions based on recent and evolving molecular and biochemical knowledge.

Each Concept Mapping provides a basic framework of interconnected concepts arranged in a hierarchical form leading to integration and critical thinking. Most chapters include one or more *Concept Mappings*. Each Concept Mapping provides a basic framework of interconnected concepts arranged in a hierarchical form leading to integration and critical thinking. Concept Mapping and Essential Concepts highlight key issues to remember, correlate, and extend in forthcoming courses during medical education. Students may find the new online audiovisual version of Concept Mappings convenient for reviewing and integrating the material when the time of in-course and board examinations arrives.

There are many people to be acknowledged and thanked. We are grateful for the numerous suggestions, comments, and encouragements from faculty and students. All of them provided valuable feedback to make the message clearer and more consistent. We also thank publishers who made available to students the Chinese, French, Greek, Japanese, Portuguese, Spanish, and Turkish editions. Our special appreciation goes to the production team of Elsevier in the Philadelphia and St. Louis offices for their magnificent effort in making sure that the fourth edition met high publishing standards.

Abraham L. Kierszenbaum and Laura L. Tres

PART I | BASIC TISSUES AND INTEGRATED CELL BIOLOGY AND GENERAL PATHOLOGY

Chapter 1 EPITHELIUM

General classification of epithelia, 1

Concept Mapping | Types of epithelia, 1

Epithelial cell polarity, 2 Apical differentiations, 2

Cilia, 2

Multiple motile cilia, 4

Single or primary non-motile cilium, 6

Stereocilia (stereovilli), 6 Cell adhesion molecules, 6

Cadherins, 6 Selectins, 9

Ig superfamily, 9 Integrins, 10

ADAM proteins, 11 Cell junctions, 12

Anchoring junctions, 13

Zonula adherens or belt desmosome, 13 Macula adherens or spot desmosome, 13

Hemidesmosomes, 14

Gap junctions or communicating junctions, 14

Clinical significance: Connexin mutations, 16

Basement membrane, 16

Epithelium: Highlights to remember, 18

Cytoskeleton, 19 Microfilaments, 20 Microtubules, 23 Centrosome, 24

The axoneme of cilia and flagella, 26

Clinical significance: Microtubule-targeted drugs. Sterility, 26

Microtubules: Cargo transport and motor proteins, 27

Axonal transport, 29

Myosin family of proteins, 29 Myosin light-chain kinase, 30 Intermediate filaments, 30

Hemidesmosomes and intermediate filaments, 34

Clinical significance: Skin blistering diseases, 35

Cell nucleus, 36

Nuclear envelope and nuclear pore complex, 36 Nucleocytoplasmic transport: Ran-GTPase, 37

Chromatin, 37

Dosage compensation: X chromosome inactivation, 38

Nucleolus, 41

Localization of nucleic acids, 43

Cell cycle, 43

Autoradiography and FACS, 44

Breakdown and reassembly of the nuclear envelope, 46 Tumor-suppressor genes: The retinoblastoma model, 47

Clinical significance: Retinoblastoma tumors, 49

Telomerase, senescence, and cancer, 49

Mitosis, 49

Clinical significance: The p53 signaling pathway, 50

Mitosis, 50

Basic Concepts of Medical Genetics, 50

Chromosomal disorders, 51

Mendelian inheritance: Single gene disorders, 52

Concept Mapping | Human development and genetic diseases, 53

Non-mendelian Inheritance, 54

Karyotyping (chromosome analysis), 55

Essential Concepts | Epithelium, 55

Concept Mapping | Epithelial Differentiation, 56

Chapter 2 EPITHELIAL GLANDS

Development of epithelial glands, 59 Classification of epithelial glands, 59

Secretory portion: Unicellular or multicellular, 59

Shape of the secretory portion, 61

Types of secretion, 61

Mechanisms of secretion, 62

Plasma membrane and cytomembranes, 63

Plasma membrane, 63

Phospholipid bilayer, 63

Membrane proteins, 64

Freeze-fracture: Difference between a surface and a face, 65

Transporter and channel proteins, 66

Endoplasmic reticulum, 67

Rough endoplasmic reticulum, 67

Protein synthesis and sorting, 68

Golgi apparatus, 68

Functions of the Golgi apparatus, 68

Vesicle transport, 70

Sorting of clathrin-coated vesicles and COP-coated

vesicles, 70

Vesicle fusion to a target membrane: NSF and

SNARE proteins, 72

Lysosomal sorting pathway: M6P and its receptor, 72 Receptor-mediated endocytosis: Cholesterol uptake, 72

Clinical significance: Familial hypercholesterolemia, 74

Lysosomes, 74

Phagocytosis, endocytosis, and macroautophagy, 76

Clinical significance: Lysosomal storage disorders, 79

Mitochondria, 79

Mitochondria participate in apoptosis, steroidogenesis

and thermogenesis, 82

Clinical significance: Mitochondrial maternal

inheritance, 82 Peroxisomes, 83

Clinical significance: Peroxisomal disorders, 84

Concept Mapping | Epithelial Glands, 85

Essential Concepts | Epithelial Glands, 85

Chapter 3 **CELL SIGNALING**

Types of cell signaling and feedback action, 89

Hormones and ligands, 89

Steroid hormones, 89

Peptide hormones and growth factors, 91

Nitric oxide, 91

Neurotransmitters, 92

Cell signaling molecules binding, 91

Cell surface receptors, 92

G protein-coupled receptors, 92

Receptor and nonreceptor tyrosine kinases, 92

Cytokine receptors, 94

Receptors linked to tyrosine phosphatases and

serine-threonine kinases, 94

Major signal transduction pathways, 95

The cAMP pathway, 95

The cGMP pathway, 96

The phospholipid-calcium pathway, 96

The calcium-calmodulin pathway, 96

The Ras, Raf, and MAP kinase pathway, 97

The JAK-STAT pathway, 98

NF-κB transcription factor pathway, 98

The integrin-actin pathway, 98

General Pathology: Specific signaling pathways, 98

General Pathology: Stem cell niches and stemness, 99 Regenerative medicine by cell reprogramming, 100

Cell culture, 101

General Pathology: Cellular senescence and cancer, 102

General Pathology: Cell and tissue injury, 103 Concept Mapping | Cell death, necrosis, and apoptosis, 104

General Pathology: Necrosis, 105 General Pathology: Apoptosis, 105

What a nematode worm told us about apoptosis, 107 Extrinsic and intrinsic signals of apoptosis, 107

Caspases: Initiators and executioners of cell death, 108 General Pathology: Apoptosis in the immune

General Pathology: Apoptosis in neurodegenerative diseases, 108

General Pathology: Necroptosis, 110

General Pathology: Mitochondrial permeability transition, 111

system, 108

General Pathology: Intracellular degradation, 111

Autophagy pathway, 111

Ubiquitin-proteasome pathway, 112 Concept Mapping | Neoplasia, 113 Mitophagy signaling pathway, 114 General Pathology: Neoplasia, 114

General Pathology: Proto-oncogenes, oncogenes,

and tumor suppressor genes, 116

Concept Mapping | Oncogenes and tumor suppressor genes, 117

Identification of oncogenes in retroviruses, 118 Essential Concepts | Cell Signaling, 119 Concept Mapping | Cell Signaling, 119

Chapter 4 CONNECTIVE TISSUE

Classification, 123

Components of connective tissue, 125

Collagen: Synthesis, secretion, and assembly, 126

Pathology: Ehlers-Danlos syndrome, 128

Elastic fibers, 128

Pathology: Marfan syndrome, 129

Macrophages, 130 Mast cells, 131

Pathology: Mast cells and allergic hypersensitivity

reactions, 132 Plasma cells, 132 Extracellular matrix, 132

Pathology: Degradation of the extracellular matrix, 135

Concept Mapping | MMPs and TIMPs, 136

Pathology: Molecular biology of tumor invasion, 136

Adipose tissue or fat, 136 Adipogenesis, 136

Lipid storage and breakdown, 138 Clinical significance: Obesity, 140

Cartilage, 140

Growth of cartilage (chondrogenesis), 140

Types of cartilage, 141

Bone, 145

Macroscopic structure of mature bone, 145

Microscopic structure of mature bone, 146

Periosteum and endosteum, 146

Bone matrix, 147

Cellular components of bone, 148

The osteoblast, 149

Pathology: Differentiation of the preosteoblast to osteoblast to osteocyte, 151

The osteoclast, 152

Osteoclastogenesis (osteoclast differentiation), 153

Pathology: Osteoporosis, osteopetrosis, and osteomalacia, 155

Essential Concepts | Connective Tissue, 156

Concept Mapping | Connective Tissue, 157

Chapter 5 OSTEOGENESIS

Intramembranous ossification, 161 Endochondral ossification, 163 Secondary centers of ossification, 163 Zones of endochondral ossification, 164 Growth in width of the diaphysis, 169 Hedgehog signaling: The epiphyseal growth plate and dwarfism, 169 Conversion of a bone trabecula into an osteon, 170 Bone remodeling, 171

General Pathology: Bone fracture and healing, 172 General Pathology: Metabolic and hereditary bone

disorders, 174

Concept Mapping | Bone disorders, 174

Joints, 176

Pathology: Rheumatoid arthritis, 177 Essential Concepts | Osteogenesis, 177

Concept Mapping | Osteogenesis, 178

Chapter 6 BLOOD AND HEMATOPOIESIS

Blood, 181

Plasma, 181

Red blood cells (erythrocytes), 181

Pathology: RBC cytoskeletal and hemoglobin

abnormalities, 181

Clinical significance: Hemoglobin A1c (glycated hemoglobin) and diabetes mellitus, 183

Clinical significance: Erythroblastosis fetalis, 183

Leukocytes, 184 Granulocytes, 184 Agranulocytes, 187

Pathology: Leukemias, 188

General Pathology: Leukocyte recruitment and

inflammation, 189

Pathology: Leukocyte adhesion deficiency (LAD), 189

Pathology: Mast cell-eosinophil interaction in

asthma, 191

Pathology: Eosinophilic esophagitis, 191

Platelets, 191

Pathology: Platelets and coagulation disorders, 192

Pathology: Hemostasis and blood clotting, 194

Hematopoiesis, 194

Hematopoietic niches, 194 The vascular niche, 197

The endosteal niche, 199

Hematopoietic cell populations, 199

Clinical significance: Hematopoietic growth factors, 201

Erythroid lineage, 201

Leukopoiesis, 204

Granulocytes, 205

Agranulocytes: Lymphocytes, 208

Monocytes, 208

Pathology: Colony-stimulating factors and

interleukins, 208

Megakaryocytes and platelets, 209

Clinical significance: Thrombopoietin, 210

Pathology: Stem cell factor (also known as c-kit

ligand), 210 Pathology: Iron-overload disorders, 210

Pathology: Vitamin B₁₂, megaloblastic anemia, and microcytic anemia 213

Concept Mapping | Blood and Hematopoiesis, 214 Essential Concepts | Blood and Hematopoiesis, 214

Chapter 7 MUSCLE TISSUE

Skeletal muscle, 217

Characteristics of the skeletal muscle cell or fiber, 217

The myofibril: A repeat of sarcomere units, 219 Components of the thin and thick filaments of the

sarcomere, 219

Mechanism of muscle contraction, 221

Creatine phosphate: A backup energy source, 222

A depolarization signal travels along T tubules, 222 Neuromuscular junction: Motor end plate, 223

Clinical significance: Disorders of neuromuscular transmission, 224

Calcium controls muscle contraction, 225 Pathology: Muscular dystrophies, 225

Pathology: Satellite cells and muscle regeneration, 229

Neuromuscular spindle and Golgi tendon organ, 229 Cardiac muscle, 231

Clinical significance: Transport proteins on the

sarcolemma of cardiocytes, 231 Pathology: Myocardial infarction, 232

Smooth muscle, 234

Mechanism of smooth muscle contraction, 235

Concept Mapping | Muscle Tissue, 237 Essential Concepts | Muscle Tissue, 237

Chapter 8 NERVOUS TISSUE

Development of the nervous system, 239

Cell types: Neurons, 241 Types of neurons, 241

Designation of groups of neurons and axons, 242

Synaptic terminals and synapses, 242

Clinical significance: Axonal transport of rabies virus, 243

Glia: The "connective tissue" of the CNS, 246

Astrocytes, 247

Oligodendrocytes and Schwann cells: Myelinization, 247

Myelin: Protein and lipid components, 249 Pathology: Demyelinating disease, 252 Pathology: Neurodegenerative disease, 254

Microglial cells, 260 Ependyma, 262 Choroid plexus, 262 Cerebrospinal fluid, 262

Clinical significance: Brain permeability barriers, 262

Peripheral nervous system, 265 Structure of a peripheral nerve, 265 Pathology: Schwannomas, 267

Clinical significance: Segmental demyelination and axonal degeneration, 287

Sensory (spinal) ganglia, 267 Autonomic nervous system, 268 Neurohistochemistry, 269

Concept Mapping | Nervous Tissue, 270 Essential Concepts | Nervous Tissue, 270

Chapter 9 SENSORY ORGANS: VISION AND HEARING

Eye, 273

Development of the eye, 273 Outer tunic: Sclera and cornea, 274

Cornea, 274

Middle tunic: Uvea, 275

The three chambers of the eye, 278

Lens, 278

Clinical significance: Cataracts, 282

Accommodation, 283

Inner layer: Retina, 285

Clinical significance: Detachment of the retina, 285

Cell layers of the retina, 285

Photoreceptor neurons: Rods and cones, 285 Conducting neurons: Bipolar and ganglion cells, 287 Association neurons: Horizontal and amacrine

cells, 292 Supporting glial cells: Müller cells, 292 Fovea centralis and optic disk, 293

The eyelids, conjunctiva, and the lacrimal gland, 294

Clinical significance: The red eye, 296

Ear, 296

External ear, 297

Middle ear, 297

Inner ear: Development of the inner ear, 298

General structure of the inner ear, 299

Vestibular organ, 299 Semicircular canals, 299

Otolithic organs: Utricle and saccule, 302 Clinical significance: Ménière's disease, 303

Cochlea, 303

Organ of Corti, 305

Molecular and mechanical aspects of the hearing

process, 305

Clinical significance: Deafness and balance, 308

Concept Mapping | Sensory Organs: Eye, 309 Concept Mapping | Sensory Organs: Ear, 311

Essential Concepts | Sensory Organs: Vision and Hearing, 309

PART II | ORGAN SYSTEMS: PROTECTION OF THE BODY

Chapter 10 IMMUNE-LYMPHATIC SYSTEM

Components of the lymphatic system, 313

Types of immunity, 314

Properties of adaptive or acquired immunity, 315

Development and maturation of B cells in bone

marrow, 315

Major histocompatibility complex (MHC) and human

leukocyte antigens (HLA), 316 T cell receptor complex, 317 CD4 and CD8 coreceptors, 317

T cell maturation in the thymus: Positive and negative

selection, 317

How do helper T cells help?, 319

T cell subsets: TH1 and TH2 cells and cytolytic or

cytotoxic T cells, 319

How do cytolytic T cells kill?, 320

Natural killer cells, 321

Clinical significance: Acquired immunodeficiency

syndrome, 321

General Pathology: Hypersensitivity reactions, 322 General Pathology: Complement system, 325

General Pathology: Inflammation, 327

Acute inflammation, 327

Concept Mapping | Acute inflammation, 329

Concept Mapping | Acute and chronic inflammation

compared, 330

Chronic inflammation, 330

Lymphoid organs, 332 Lymph nodes, 332

Pathology: Lymphadenitis and lymphomas, 335

Thymus, 336

Development of the thymus, 336

Structure of the thymus, 337

Spleen, 341

Vascularization of the spleen, 342

White pulp, 344 Red pulp, 345

Clinical significance: Sickle cell anemia, 346

Clinical significance: Asplenia, 347

Clinical significance: Adoptive cell transfer, 347

Essential Concepts | Immune-Lymphatic System, 348

Concept Mapping | Immune-Lymphatic System, 350

Chapter 11 INTEGUMENTARY SYSTEM

General organization and types of skin, 353

Epidermis, 353

General Pathology: Wound healing, 355

Concept Mapping | Wound healing, 356

Pathology: Psoriasis, 358

Differentiation of a keratinocyte, 361

Melanocytes, 363

Langerhans cells (dendritic cells), 365

Merkel cells, 366

Pathology: Tumors of the epidermis, 366

Dermis, 367

Pathology: Epithelial antimicrobial proteins, 367

Blood and lymphatic supply, 368

Pathology: Vascular disorders of the skin, 369

Sensory receptors of the skin, 369

Pathology: Leprosy, 371

Hypodermis (superficial fascia), 371

Epidermal derivatives: Hair (pilosebaceous unit), 371

Bulge stem cell pathways, 373

Epidermal derivatives: Sebaceous glands, 374

Epidermal derivatives: Sweat glands, 374

Clinical significance: Sweat glands and cystic fibrosis, 377

Epidermal derivatives: Fingernails, 378

Essential Concepts | Integumentary System, 378 Concept Mapping | Integumentary System, 379

PART III | ORGAN SYSTEMS: BLOOD CIRCULATORY SYSTEMS

Chapter 12 CARDIOVASCULAR SYSTEM

General characteristics of the cardiovascular system, 383

Heart, 383

Conductive system of the heart, 383

Purkinje fibers, 384 Arteries, 384

Large elastic arteries are conducting vessels, 385

Pathology: Aortic aneurysms, 385

Medium-sized muscular arteries are distributing

vessels, 387

Arterioles are resistance vessels, 387

Capillaries are exchange vessels, 387

Types of capillaries, 388

Veins are capacitance, or reservoir, vessels, 390

Pathology: Vasculitis, 391 Lymphatic vessels, 394

Clinical significance: Edema, 395 Clinical significance: Hemorrhage, 396

Special capillary arrangements: Glomerulus and

portal systems, 396

Endothelial cell-mediated regulation of blood flow, 396

Pathology: Atherosclerosis, 399

Pathology: Vasculogenesis and angiogenesis, 399

Pathology: Neovascularization and vascular co-option, 402

Clinical significance: Hypertension, 402

Concept Mapping | Pathogenesis of hypertension, 403

Concept Mapping | Cardiovascular pathogenesis, 404 Concept Mapping | Cardiovascular System, 405

Essential Concepts | Cardiovascular System, 405

Chapter 13 RESPIRATORY SYSTEM

Nasal cavities and paranasal sinuses, 409

Nasopharynx, 410

Olfactory epithelium, 410

Larynx, 411

Trachea, 413

Segmentation of the bronchial tree, 414

Pulmonary lobule and acinus, 414

Pathology: Chronic obstructive pulmonary disease, 418

Pathology: Asthma, 421

Club cells (Clara cells), 421

Clinical significance: Cystic fibrosis, 424

Respiratory portion of the lung, 427

The alveolus, 428

Type II alveolar cells, 429

Pathology: Acute respiratory distress syndrome, 430

Pathology: Lung cancer, 432

Pleura, 434

Pathology: Disorders of the pleura, 434

Essential Concepts | Respiratory System, 435

Concept Mapping | Respiratory System, 436

Chapter 14 URINARY SYSTEM

The kidneys, 439

Organization of the renal vascular system, 439

Vasa recta, 441

Renal medullary pyramid, renal lobe, and renal lobule, 441

The uriniferous tubule: Nephron and collecting duct, 442

The renal corpuscle, 443

Glomerular filtration barrier, 443

Pathology: Defects of the GBM, 447

Clinical significance: Slit filtration diaphragm, 448

Mesangium, 448

Pathology: Podocyte injury, 449 Juxtaglomerular apparatus, 452 Proximal convoluted tubule, 452

Pathology: Acute kidney injury, 452

Loop of Henle, 455

Distal convoluted tubule, 455

Collecting tubule/duct, 457

Renal interstitium, 458

Excretory passages of urine, 459

Regulation of water and NaCl absorption, 459

Renin-angiotensin system (RAS), 461

Countercurrent multiplier and exchanger, 462

Clinical significance: Mechanism of action of diuretics, 464

Essential Concepts | Urinary System, 464

Concept Mapping | Urinary System, 465

PART IV | ORGAN SYSTEMS: THE ALIMENTARY SYSTEM

Chapter 15 UPPER DIGESTIVE SEGMENT

Mouth, or oral cavity, 469

Lips, 470

Gingiva, hard, and soft palate, 471

Tongue, 471

Tooth, 473

Tooth development, 473

Odontoblasts, 473

Dental pulp, 474

Periodontium, 476 Ameloblasts, 477

Pathology: Non-neoplastic and neoplastic lesions

of the oral mucosa, 478

General organization of the digestive, or alimentary

tube, 478

Microvasculature of the digestive tube, 479

Pathology: Gastric microcirculation and gastric ulcers, 456

Nerve supply of the digestive tube, 481

Esophagus, 482

Clinical significance: Barrett's metaplasia, 482

Stomach, 484

Cardia region, 485

The gastric gland, 485

Secretion of hydrochloric acid, 489

Pathology: Helicobacter pylori infection, 490

Gastroenteroendocrine cells, 492

Clinical significance: Zollinger-Ellison syndrome, 493

Pyloric glands, 493

Mucosa, submucosa, and muscularis of the stomach, 494

Concept Mapping | Upper Digestive Segment, 495 Essential Concepts | Upper Digestive Segment, 495

Chapter 16 LOWER DIGESTIVE SEGMENT

Small intestine, 499

The peritoneum, 499

Intestinal wall, 499

Microcirculation of the small intestine, 501

Innervation and motility of the small intestine, 502

Histologic differences between the duodenum,

jejunum, and ileum, 502

Villi and crypts of Lieberkühn, 504

Enterocytes: Absorptive cells, 504

Trafficking of sugars and peptides in enterocytes, 504

Trafficking of lipids and cholesterol in enterocytes, 504

Goblet cells, 507

Enteroendocrine cells, 508 Intestinal stem cells, 508

Protection of the small intestine, 508

Intestinal tight junction barrier, 509

Peyer's patches, 510 Polymeric IgA, 513 Paneth cell, 516

Pathology: Inflammatory bowel diseases, 517

Clinical significance: Malabsorption syndromes, 517

Large intestine, 519 The appendix, 519 The rectum, 521

Pathology: Hirschsprung's disease, 521 Pathology: Colorectal tumorigenesis, 523

Essential Concepts | Lower Digestive Segment, 525

Concept Mapping | Lower Digestive Segment, 526

Chapter 17 DIGESTIVE GLANDS

General structure of a salivary gland, 529

Saliva, 529

Parotid gland, 530

Pathology: Mumps, rabies, and tumors, 532

Submandibular (submaxillary) gland, 532 Sublingual gland, 532

Exocrine pancreas, 534

Pathology: Carcinoma of the pancreas, 535 Functions of the pancreatic acinus, 538

Pathology: Acute pancreatitis and cystic fibrosis, 513

General organization of the hepatic lobule, 540

Functional view of the liver lobule, 541

Hepatocyte, 542 Peroxisomes, 548

Pathology: Liver iron-overload disorders, 520 Pathology: Alcoholism and fatty liver (alcoholic

steatohepatitis), 548

Pathology: Perisinusoidal cells, 548

Pathology: Chronic hepatitis and cirrhosis, 550

Bile: Mechanism of secretion, 551 Metabolism of bilirubin, 552 Composition of the bile, 553

Pathology: Conditions affecting bile secretion, 553

Clinical significance: Hyperbilirubinemia, 554

Gallbladder, 555

Essential Concepts | Digestive Glands, 555

Concept Mapping | Digestive Glands, 556

PART V | ORGAN SYSTEMS: THE ENDOCRINE SYSTEM

Chapter 18 NEUROENDOCRINE SYSTEM

Hypophysis, 559

Embryologic origin of the hypophysis, 560 Hypothalamo-hypophyseal portal circulation, 560 Histology of the pars distalis (anterior lobe), 563 Hormones secreted by acidophils: Growth hormone and

prolactin, 564

Growth hormone, 564 Clinical significance: Gigantism (in children) and acromegaly (in adults), 564

Prolactin, 565

Clinical significance: Hyperprolactinemia, 566

Hormones secreted by basophils: Gonadotropins,

TSH, and ACTH, 566

Gonadotropins: Follicle-stimulating hormone and

luteinizing hormone, 566

Clinical significance: Infertility, 567 Thyroid-stimulating hormone (thyrotropin), 568 Clinical significance: Hypothyroidism, 568

Adrenocorticotropic hormone, 568

Clinical significance: Cushing's disease, 569

Neurohypophysis, 571

Clinical significance: Diabetes insipidus, 572

Pineal gland, 575

Development of the pineal gland, 575 Histology of the pineal gland, 576

Pinealocytes secrete melatonin, 576 Light is a regulator of circadian rhythms, 576

Pathology: Pineocytomas, 577

Concept Mapping | Neuroendocrine System, 578

Essential Concepts | Neuroendocrine System, 578

Chapter 19 ENDOCRINE SYSTEM

Thyroid gland, 581

Development of the thyroid gland, 581

Histologic organization of the thyroid gland, 581

Function of the thyroid gland, 581

Clinical significance: Hyperthyroidism (Graves'

disease) and hypothyroidism, 585

Concept Mapping | Pathology of the thyroid gland, 587

Calcium regulation, 588 Parathyroid glands, 589

Development of the parathyroid glands, 589

Histologic organization of the parathyroid glands, 589

Signal transduction mediated by CaSR, 589

Function of the parathyroid hormone, 589 Clinical significance: Hyperparathyroidism and

hypoparathyroidism, 589

Clinical significance: CaSR mutations, 591

C cells (thyroid follicle), 591

Vitamin D, 591

Clinical significance: Rickets and osteomalacia, 592

Adrenal (suprarrenal) glands, 593 Development of the adrenal gland, 593 Functions of the adrenal cortex, 593

Histologic organization of the adrenal cortex, 593

Zona glomerulosa, 593 Zona fasciculata, 595 Zona reticularis, 595 Adrenal medulla, 595

Adrenergic receptors α and β , 598 Blood supply to the adrenal gland, 598

Pathology: The adrenal cortex, 601 Pathology: Pheochromocytoma, 602

Clinical significance: Congenital adrenal hyperplasia, 602

Endocrine pancreas, 602

Development of the pancreas, 602

Islet of Langerhans, 602

Clinical significance: ATP-sensitive K+ channel and insulin secretion, 603

Clinical significance: Insulin and diabetes, 607

Concept Mapping | Endocrine System, 608

Essential Concepts | Endocrine System, 608

PART VI | ORGAN SYSTEMS: THE REPRODUCTIVE SYSTEM

Chapter 20 SPERMATOGENESIS

The testes, 611

Seminiferous epithelium, 613

The basal and adluminal compartments of the

seminiferous epithelium, 614

The spermatogenic developmental sequence, 617

Sertoli cells, 617

Clinical significance: Sertoli cell-only syndrome, 619

Spermatogonia, 619 Spermatocytes, 620 Meiosis, 621

Spermatids, 623

Completion of spermiogenesis and spermiation, 627

Structure of the sperm, 629

Pathology: Conditions affecting male fertility, 629

Temperature, 629

Cryptorchidism, 630

Inguinal hernia, cysts, and hydrocele, 631

Cancer chemotherapy, 631

Viral orchitis, 631

Spermatic cord torsion, 631

Varicocele, 631

Leydig cells, 631

Clinical significance: Steroidogenic acute regulatory protein, 633

Hormonal control of the male reproductive tract, 633

The spermatogenic cell sequence, 633

Clinical significance: Epigenetics reprogramming, 637

Pathology: Testicular tumors, 639

Concept Mapping | Spermatogenesis, 641

Essential Concepts | Spermatogenesis, 642

Chapter 21 SPERM TRANSPORT AND MATURATION

Development of the gonads, 645

Testis-determining factor controls the development of the testis, 645

Development of male and female internal genitalia, 647

Testicular descent, 648

Clinical significance: Klinefelter's syndrome, 648

Clinical significance: Androgen insensitivity syndrome

Clinical significance: Steroid 5α -reductase 2 deficiency, 649

Sperm maturation pathway, 651

The epididymal ducts, 652

Clinical significance: Causes of male infertility, 654

Accessory genital glands, 655 Seminal vesicles, 655 Prostate gland, 655

Pathology: Benign prostatic hyperplasia, 657

Pathology: Prostate cancer, 658 Male and female urethra, 659 Bulbourethral glands, 659

Penis, 659

Clinical significance: Erectile dysfunction, 660 Essential Concepts | Sperm Transport and

Maturation, 661

Concept Mapping | Sperm Transport and Maturation, 662

Chapter 22 FOLLICLE DEVELOPMENT AND THE MENSTRUAL CYCLE

Development of the female reproductive tract, 665

Development of the ovary, 665

Development of the female genital ducts, 665

Development of the external genitalia, 667

Clinical significance: Developmental anomalies of

the müllerian duct, 667

Clinical significance: Turner's syndrome, 667

The ovaries, 667

The ovarian cycle, 667

Paracrine signaling and cell-cell communication

during folliculogenesis, 668

Granulosa cell-primary oocyte bidirectional signaling, 671

Theca interna-granulosa cell synergistic

communication, 673

Follicular atresia or degeneration, 673

Ovulatory phase, 674

Luteal phase: Luteinization and luteolysis, 674 Hormonal regulation of ovulation and the corpus luteum, 680

Oviduct, fallopian or uterine tube, 680

Uterus, 682

Vascularization of the endometrium and menstruation, 684

Clinical significance: Delayed puberty and

hypothalamic amenorrhea, 684 Clinical significance: Endometriosis, 684

Cervix, 686

Pathology: Cervical intraepithelial neoplasia and human papillomavirus infection, 686

Vagina, 686

Pathology: Diagnostic cytopathology, 688

Mons pubis, labia majora, and labia minora, 688 Urethral meatus and glands (paraurethral glands

and Bartholin's glands), 688

Essential concepts | Follicle Development and The Menstrual Cycle, 689

Concept Mapping | Follicle Development and The Menstrual Cycle, 689

Chapter 23 FERTILIZATION, PLACENTATION, AND LACTATION

Fertilization, 693

Zona pellucida during fertilization, 696

Preimplantation of the fertilized egg or zygote, 697

Implantation of the blastocyst, 698

Differentiation of the trophoblast, 699

Immunoprotective decidua during implantation, 699

Primary, secondary, and tertiary villi, 701

Histology of the placenta, 701

Placenta: Decidua basalis and villus corion, 702

Placental blood circulation, 703

Structure of the chorionic villus, 703

Functions of the placenta, 705

Exchange of gases, 705

Transfer of maternal immunoglobulins, 705

Rh (D antigen) isoimmunization, 705

The fetoplacental unit, 706

The luteal-placental shift, 706

Active transport of ions and glucose, 706

Fetal alcohol syndrome, 706

Infectious agents, 706

Clinical significance: Ectopic pregnancy, 706

Pathology: Placenta previa, 706

Pathology: Abnormal separation and implantation of the placenta, 707

Pathology: Gestational trophoblastic diseases, 708 Lactation, 708

The mammary glands, 708

Morphogenesis of the mammary glands, 709

Remodeling during mammary gland development, 709

Mammary glands during puberty and pregnancy, 711

Histology of the mammary glands, 713

Suckling during lactation, 713

Clinical significance: Androgen insensitivity syndrome, 714

Pathology: Benign breast diseases and breast cancer,

Concept Mapping | Fertilization, Placentation, and Lactation, 715

Essential Concepts | Fertilization, Placentation, and Lactation, 715

INDEX, 719

1. Epithelium

Epithelia separate the internal environment from the external environment by forming sheets of polarized cells held together by specialized junctional complexes and cell adhesion molecules. Epithelial cells participate in embryo morphogenesis and organ development in response to intrinsic and extrinsic signaling by tailoring cell proliferation, differentiation and cell death. We address the structural characteristics of epithelial cells within a biochemical and molecular framework as an introduction to the transition from a normal to a pathologic status.

General classification of epithelia

The epithelium is a tightly cohesive sheet of cells that covers or lines body surfaces (for example, skin, intestine, secretory ducts) and forms the functional units of secretory glands (for example, salivary glands, liver). The main characteristics of epithelia are summarized in Box 1-A.

The traditional classification and nomenclature of different types of epithelia are based on two parameters:

- 1. The shapes of individual cells.
- 2. The arrangement of the cells in one or more layers (Figure 1-1).

Individual epithelial cells can be flattened (squamous cells), have equal dimensions (cuboidal cells), and be taller than wider (columnar cells).

According to the number of cell layers, an epithelium consisting of a single cell layer is classified as simple epithelium.

Simple epithelia, in turn, are subdivided into

simple squamous epithelium, simple cuboidal epithelium, and simple columnar epithelium, according to the shape of their cell components. The specific name endothelium is used for the simple squamous epithelium lining the blood and lymphatic vessels. Mesothelium is the simple squamous epithelium lining all body cavities (peritoneum, pericardium, and pleura). Figure 1-2 provides examples of simple epithelia.

Stratified epithelia are composed of more than one cell layer. Stratified epithelia are subclassified according to the shapes of the cells at the superficial or outer layer into stratified squamous epithelium, stratified cuboidal epithelium, and stratified columnar epithelium.

Stratified squamous is the epithelium most frequently found and can be subdivided into moderately keratinized (also known as nonkeratinizing) or highly keratinized types (Figure 1-3). The cells of the outer layer of a nonkeratinizing squamous epithelium retain

Box 1-A | Main characteristics of epithelia

- · Epithelia derive from the ectoderm, mesoderm, and endoderm,
- Epithelia line and cover all body surfaces except the articular cartilage, the enamel of the tooth, and the anterior surface of the iris.
- The basic functions of epithelia are **protection** (skin), **absorption** (small and large intestine), **transport of material** at the surface (mediated by cilia), **secretion** (glands), **excretion** (tubules of the kidneys), **gas exchange** (lung alveolus), and **gliding between surfaces** (mesothelium).
- · Most epithelial cells renew continuously by mitosis.
- Epithelia lack a direct blood and lymphatic supply. Nutrients are delivered by diffusion.
- Epithelial cells have almost no free intercellular substances (in contrast to connective tissue).
- The cohesive nature of an epithelium is maintained by cell adhesion molecules and junctional complexes.
- Epithelia are anchored to a **basal lamina**. The basal lamina and connective tissue components cooperate to form the **basement membrane**.
- · Epithelia have structural and functional polarity.

nuclei (for example, esophagus and vagina). Nuclei are absent in the outer layer of the highly keratinized stratified squamous epithelium (for example, the epidermis of the skin). Stratified epithelia have basal cells aligned along the basal lamina. Basal cells are mitotically active and continuously replace the differentiating cells of the upper layers.

Although rare, there are also **stratified cuboidal epithelia** (for example, in the ovarian follicles) and **stratified cuboidal epithelia** (for example, lining the intralobular ducts of salivary glands).

Two special categories are the pseudostratified epithelium and the urothelium. The pseudostratified epithelium consists of basal and columnar cells resting on the basal lamina. Only the columnar cells reach the luminal surface. Because the nuclei of the basal and columnar cells are seen at different levels, one has the impression of a stratified epithelial organization.

Within this category are the pseudostratified columnar ciliated epithelium of the trachea and the pseudostratified columnar epithelium with stereocilia of the epididymis (Figure 1-4).

The epithelium of the human urinary passages, also referred to as **urothelium**, has the characteristics of a pseudostratified epithelium: it consists of basal cells, intermediate cells and columnar dome-shaped cells, each extending thin cytoplasmic processes reaching the basal lamina (Figure 1-4). An important feature of this epithelium is its transitional height that varies with distention and contraction of the organ (see Chapter 14, Urinary System).

Epithelial cell polarity

An important aspect of an epithelium is its **polarity**. Polarity is essential to carry out specific functions of the various organ systems. Polarity is determined by

the distribution of proteins and lipids and the rearrangement of the cytoskeleton.

Most epithelial cells lining surfaces and cavities and have three **geometric** domains (Figure 1-5):

- 1. The apical (uppermost) domain is exposed to the lumen or external environment and displays apical differentiations.
- 2. The lateral domain faces neighboring epithelial cells linked to each other by cell adhesion molecules and junctional complexes.
- 3. The basal domain is associated with a basal lamina that separates the epithelium from underlying connective tissue, representing the internal environment. The basal lamina, of epithelial cell origin, is reinforced by components of the connective tissue. The basal lamina—connective tissue complex is designated the basement membrane.

From the functional perspective, sealing junctions segregate the plasma membrane of an epithelial cell into an apical domain and a basolateral domain. This segregation is supported by the asymmetric distribution of transporting molecules ensuring polarized secretory and absorptive functions of an epithelium.

For example, the apical domain has structures important for the protection of the epithelial surface (such as cilia in the respiratory tract) or for the absorption of substances (such as microvilli in the intestinal epithelium). In contrast, the basolateral domain facilitates directional or vectorial transport functions prevented from trespassing the sealing junctions.

Apical differentiations

The apical domain of some epithelial cells can display three types of differentiation:

- 1. Cilia.
- 2. Microvilli.
- 3. Stereocilia.

Cilia

There are two types of cilia (singular, cilium; Figure 1-6): multiple motile cilia and a single or a primary non-motile cilium.

Ciliogenesis, the assembly process of both types of cilia, is initiated by the basal body, a structure originated from a basal body precursor located in the centrosome. The basal body precursor multiplies and undergoes differentiation under control of six small, non-protein coding microRNAs that inhibit the translation of the mRNA encoding the centrosomal protein CP110. If the expression of CP110 protein increases by deletion of the regulatory microRNAs, basal bodies fail to dock to the apical plasma membrane, disrupting ciliogenesis and giving rise to human respiratory disease and primary ciliary dyskinesia.

Figure 1-2. Simple epithelium

Simple squamous epithelium (endothelium)

The inner lining of all blood vessels consists of a single layer of squamous endothelial cells. The thinness of the simple squamous

epithelial cells reflects their primary function in rapid exchange of substances between blood and tissue. A similar epithelium (called **mesothelium**) covers the peritoneum, pleura, and pericardium.

Simple cuboidal epithelium (collecting tubule, kidneys)

The inner lining of kidney tubules and thyroid follicles consists of a single layer of cuboidal cells. Cuboidal cells are highly polarized and

participate in absorption, secretion (thyroid gland), and active ion transport (kidneys). Similar to the endothelium, a basal lamina attaches the cell to the subjacent connective tissue.

Simple columnar epithelium (small intestine)

The small intestine is lined by columnar epithelial cells with the nucleus in the medial portion of the cell. The apical domain contains finger-like projections called **microvilli** forming a **brush border**. Microvilli participate in the absorption of proteins, sugar, and lipids, which are released at the basolateral domain into the blood

circulation for transport to the liver.

Goblet cells are present among the columnar epithelial cells. They can be distinguished by a dilated, goblet-like apical cytoplasm containing a light-stained mucus material. Mucus is released into the lumen and coats the epithelial cell surface. The lamina propria consists of loose connective tissue located beneath the epithelium.

Figure 1-3. Stratified epithelium

Stratified squamous epithelium with moderate keratin (esophagus)

This epithelium consists of **basal cells** specialized for **mitotic division**. Stratified cells covering the basal layer are differentiating cells. Cells of the outer layer are highly

differentiated: they increase their **keratin content** to protect the tissue from the mechanical action of ingested food. **The outermost cells retain their nuclei**. This epithelium is also known as **nonkeratinizing**.

Highly keratinized cells of the

Stratified squamous epithelium with abundant keratin (epidermis)

This highly keratinized epithelium also consists of basal cells specialized for mitotic division. Stratified cells covering the basal layer are differentiating cells. Cells of the outer layer contain

abundant **keratin** to prevent water loss and penetration of chemical and physical insults. **The outermost cells lack nuclei**. This epithelium is also known as **keratinizing**.

Under normal conditions, basal bodies migrate to the apical plasma membrane and extend into the extracellular space the axoneme, a microtubular structure that forms the basic structure of the cilium.

Multiple motile cilia

Multiple motile cilia function to coordinate fluid or cargo flow on the surface of an epithelium. They are cell projections originating from basal bodies anchored by rootlets to the apical portion of the cytoplasm (Figure 1-6).

A basal body contains nine triplet microtubules in

a helicoid array without a central microtubular component. By contrast, a cilium consists of an axoneme formed by a central pair of microtubules surrounded by nine concentrically arranged microtubular pairs. This assembly is known as the 9 + 2 microtubular doublet arrangement. The axoneme is also a component of the sperm tail, or flagellum.

The trachea and the oviduct are lined by ciliated epithelial cells. In these epithelia, ciliary activity is important for the local defense of the respiratory system and for the transport of the fertilized egg to the uterine cavity.

Figure 1-4. Pseudostratified epithelia

Pseudostratified columnar ciliated epithelium (trachea)

This epithelium consists of three major cell types: (1) Columnar cells with cilia on their apical domain. (2) Basal cells anchored to the basal lamina. (3) Goblet cells, mucus-secreting epithelial cells. Columnar ciliated and goblet cells attach to the basal lamina and reach the lumen. Basal cells do not reach the lumen.

Pseudostratified columnar epithelium with stereocilia/stereovilli (epididymis)

The epididymal epithelium contains two major cell types. (1) Columnar cells with stereocilia and highly developed Golgi apparatus (called principal cells). (2) Basal cells attached to the basal lamina. Basal and principal cells are associated with the basal lamina. Only principal cells reach the lumen. Sperm can be visualized in the lumen. Stereocilia is an early misnomer as they lack microtubules. An appropriate name is stereovilli.

Urothelium (urinary bladder)

The epithelium lining the urinary passages (also called urothelium), consists of three cell types. (1) dome-shaped superficial cells (often binucleated); (3) pyriform-shaped intermediate cells; and (2) polyhedral-shaped basal cells, all of them extending cytoplasmic processes anchored to the basal

lamina. In humans, the urothelium is a pseudostratified epithelium. A characteristic of the urothelium is its transitional configuration in response to distension and contraction tensional forces caused by urine. Plaques of aggregated proteins (uroplakins) are found on the apical plasma membrane of the dome-shaped superficial cells.