R B R =® X

PEARSON

Addison
Wesley

Design Patterns Java Workbook

WL Java)i}

(% EAR)

[%] Steven John Metsker
Rebecca Wirfs—Brock JF

DESIGN PATTERNS
JAvA WORKBOOK

£ ## (Design Patterns) &1 23 Figit1Es =
EWIRRRIE TR Java A F A FRIER =
BHTXE, motGENAENEESN »

4@ Q5L A 1L
www.infopower.com.cn

N B R B R N

Design Patterns Java Workbook

ViR Java Pl

(S ERhRL)

TR RS G L 1L

Design Patterns Java Workbook (ISBN 0-201-74397-3)

Steven John Metsker

Copyright © 2002 Addison Wesley Longman, Inc.

Original English Language Edition Published by Addison Wesley Longman, Inc.

All rights reserved.

Reprinting edition published by PEARSON EDUCATION ASIA LTD and CHINA ELECTRIC POWER PRESS,
Copyright © 2003.

F R EIRK e Pearson Education #44XH W8 7 tHARALAEF BEEN (B, MU IS BITBIR M & R iR 4h)
MFHAR. RIT.
REHREREAFT, AEUEATREHRDREBREATS .

A 53 NG Pearson Education i #7488, TIFEHEFEHE.

LRHRRAUREEAREFZILS BF: 01-2003-8000

For sale and distribution in the People’s Republic of China exclusively(except Taiwan, Hong Kong SAR and
Macao SAR).

NRTHFEARMERA (AREFEFE. R HFITHERAFESBHK) 88R1T.

BBER&BE (CIP) ¥R

B Java FA /(B KHrRlE. —REA. —db3. S ESHHRY, 2003
(RIRRBR R

ISBN 7-5083-1409-3

[.#.. I.X. IHLJAVAEE-BF®It—%X V.TP312

o ERR A B B8 CIP BB F (2003) % 102752 8

A B & RERRERS
F A RitERJavaF M (RERRD
% #: (3) Steven John Metsker
HEgE: ohith
HRRAT: PEESHARM
Muhk: ERH=HAB6T HEEH: 100044

#i%: (010) 88515918 f£H: (010) 88518169
B AERERERT
A 787X1092 1/16 Bl 3k: 30
£ ISBN 7-5083-1409-3

W: 20041 HIEE BN 20044E1 B B 1LKEIR)
ft: 49.80 5T
FARBTE BHEDLR

Praise for Design Patterns Java™ Workbook

“An excellent book...I'm incredibly impressed with how readable it is. I
understood every single chapter, and I think any reader with any Java
familiarity would. This book is going to be required reading in a lot of
places, including my office.”

—Joshua Engel

“Provides a new, more Java-literate way to understand the 23 GoF patterns.”
—Bob Hanmer

“This book translates Design Patterns into what Java programmers need to
know. It is full of short, engaging programming and design problems with
solutions—making it easy for programmers to work through solutions
and really make patterns ‘stick.”

—Rebecca Wirfs-Brock

“This is one exciting book. It’s approachable, readable, interesting, instruc-
tive, and just plain valuable. It'll eclipse all other books purporting to
teach people the GoF patterns in Java—and perhaps any other language.”

—John Vlissides

To Alison
Who fills our house with glimmering light
With her loving, cozy fire
And Emma-Kate and Sarah-Jane
Our precious elves, beloved sprites
Who hop as light as bird from brier.

Through the house give glimmering light
By the dead and drowsy fire;
Every elf and fairy sprite
Hop as light as bird from brier;
—William Shakespeare
A Midsummer-Night’s Dream

FOREWORD

Tell me and I forget. Teach me and I remember. Involve me and I learn.
—Benjamin Franklin

WITH Design Patterns Java™ Workbook, Steve Metsker has done some-
thing truly amazing: He’s packed a book with extensive coding examples
and dozens of exercises that challenge you to truly grok design patterns.
It uses software for a fictional company that manufactures and sells fire-
works and puts on firework displays as an example. Not onl)'l are the coding
examples more entertaining than the tired old ATM machine examples,
but you'll find yourself learning obscure firework facts as you learn design
patterns. The book is fun as well as inviting! And because it describes how
each design pattern fits in with and extends java language constructs, you
may find yourself learning more about Java, too!

A pattern is a way of doing something, a way of pursuing an intent. A
design pattern is a way of pursuing an intent using object technology:
classes and their methods, inheritance, and interfaces. Each pattern has a
name. If you and your teammates know about design patterns, you can
work more effectively—because you share a common vocabulary, it’s like
speaking in shorthand! You can discuss your intentions without groping
for the right words. And developers who routinely apply design patterns
to their code end up with code that is more flexible and easier to read and
modify.

xiii

xiv

FOREWORD

Design patterns were originally described in the book Design Patterns,
written by Erich Gamma and his colleagues (Addison-Wesley, 1995). That
book presents a catalog of 23 proven design patterns for structuring, cre-
ating, and manipulating objects. In Design Patterns Java™ Workbook, Steve
clearly explains each original design pattern from a Java programmer’s
perspective.

If you take up the challenges in this book, you'll have plenty of oppor-
tunity to learn patterns by writing and extending existing code, answering
questions that force you to think carefully, and solving some interest-
ing design problems. No matter how much you read about something, the
best way to really learn is to put it to practice.

Rebecca Wirfs-Brock
Sherwood, Oregon
January 2002

PREFACE

AT oopsLA' 2000 in Minneapolis, Minnesota, I asked Mike Hendrickson
of Addison-Wesley what types of books he thought readers wanted. I was
interested to hear that he felt that there is still a market for books to help
readers understand design patterns. 1 suggested the idea of a Java work-
book that would give readers a chance to expand and to exercise their
understanding of patterns. This sounded good to Mike, and he introduced
me to Paul Becker, who supports Addison-Wesley’s Software Patterns
Series. Paul’s immediate response was that such a book “should have been
written five years ago.” | would like to thank Mike and Paul for their ini-
tial encouragement, which inspired me to take on this task.

Since that initial meeting, Paul has supported me throughout the
entire development process, guiding this book toward publication.
Early on, Paul asked John Vlissides, the Software Patterns Series editor,
for his views on the project. John'’s reply was that Paul should support
the project “in all wise,” inspirational words that have stayed with me.

John Vlissides is also, of course, one of the four authors of Design Pat-
terns. John and his coauthors—Frich Gamma, Ralph Johnson, and Rich-
ard Helm—produced the work that is in every way the foundation of this
book. I referred to Design Patterns nearly every day that I worked on this
book and can hardly overstate my reliance on it.

I also relied on many other existing books, which are listed in the bibli-
ography. In particular, I depended on The Unified Modeling Language User

1. OOPSLA is a conference on object-oriented programming, systems, and applications,
sponsored by the Association for Computing Machinery.

XV

xvi

Preface

Guide (Booch, Rumbaugh, and jacobson 1999) for its clear explanations
of UML. For accuracy in Java-related topics I consulted Java™ in a Nutshell
(Flanagan 1999b) almost daily. I also repeatedly drew on the insights in
Patterns in Java™ (Grand 1998) and Java™ Design Patterns (Cooper 2000).

During the months I was working on this book, I also worked at a
financial services institution that has facilities in many locations. As the
book emerged, 1 developed an instructor’s course to go with it. I taught
the course in Richmond, Virginia, and my associates Tim Snyder and Bill
Trudell taught the course concurrently at other locations. I would like to
thank these instructors and the students from all three courses for their
inspiration and insights. In particular, I would like to thank Srinivasarao
Katepalli, Brad Hughes, Thiaga Manian, Randy Fields, Macon Pegram, joe
Paulchell, Ron DiFrango, Ritch Linklater, Patti Richards, and Ben Lewis
for their help and suggestions. I would also like to thank my friends Bill
Wake and Gagan Kanijlia for their reviews of this book in its early stages
and Kiran Raghunathan for his help in the later stages. I am grateful to
the sharp-eyed and conscientious readers who pointed out errors in the
first printing, especially Simon Bennett, Thierry Matusiak, Shun Nin Lau,
Alec Noronha, Wagner Truppel, and Roy Wagner. Finally, I'd like to thank
my friend Jeff Damukaitis for his suggestions, particularly his insistence
that I make the book’s code available to readers. (It is, at oozinoz.com).

As the book came along, Paul Becker arranged for many excellent
reviewers to help guide its progress. Id like to thank John Vlissides again
for his reviews. In every review, John somehow convinced me that he liked
the book while simultaneously pointing out scores of significant improve-
ments. I'd like to thank Luke Hohmann, Bob Hanmer, Robert Martin, and
Joshua Kerievsky for their help at various stages. Each of them made this
book better. I'd like to thank Joshua Engel, who has an amazing ability to
biend sharp insight with a gentle touch. I'd like to thank Rebecca Wirfs-
Brock, who had many great suggestions, including completely reorganizing
the book. I had initially not taken care to put important but understand-
able patterns up front. The book is much stronger now because of Rebecca’s
advice and the help of all the book’s reviewers. Finally, I would like to
thank Tyrrell Albaugh and the production staff at Addison-Wesley for
transforming a collection of words into an attractive and usable book.

Steve Metsker (Steve.Metsker@acm.org)

CONTENTS

Foreword xiii
Preface xv

1 INTRODUCTION TO PATTERNS 1

Why Patterns?

Why Design Patterns?

Why Java?

Why UML?

Why a Workbook?

The Organization of This Book
Welcome to Oozinoz!

Source Code Disclaimer
Summary

B PART ! INTERFACE PATTERNS
2 INTRODUCING INTERFACES 13

Ordinary Interfaces

Interfaces and Obligations
Placing Constants in Interfaces
Summary

Beyond Ordinary Interfaces

3 ADAPTER 21

Adapting in the Presence of Foresight
Class and Object Adapters

W W 0 N O OO0 nn N =

13
15
16
19
20

21
26

vii

viii CONTENTS

Unforeseen Adaptation
Recognizing ADAPTER
Summary

4 FACADE 37
Refactoring to FACADE
Facades, Utilities, and Demos
Summary

5 ComposITE 51
An Ordinary Composite
Recursive Behavior in Composites
Trees in Graph Theory
Composites with Cycles
Consequences of Cycles
Summary

6 BRIDGE 65
A Classic Example of BRIDGE: Drivers
Refactoring to BRIDGE
A Bridge Using the List Interface
Summary

B PART Il RESPONSIBILITY PATTERNS

7 INTRODUCING RESPONSIBILITY 77
Ordinary Responsibility
Controlling Responsibility with Visibility
Summary
Beyond Ordinary' Responsibility

8 SINGLETON 83
SINGLETON Mechanics
Singletons and Threads
Recognizing SINGLETON
Summary

9 OBSERVER 89
A Classic Example: OBSERVER in Swing
Model/View/Controller
Maintaining an Observable Object
Summary

31
33
34

37
47
49

51
52
54
59
63
64

65
70
73
74

77
80
81
81

83
85
87
88

89
94
99
101

10 MeDIATOR 703
A Classic Example: GUI Mediators
Relational Integrity Mediators
Summary

11 PROXY 115
A Classic Example: Image Proxies
Image Proxies Reconsidered
Remote Proxies
Summary

12 CHAIN OF RESPONSIBILITY 131
Varieties of Lookup
Refactoring to CHAIN OF RESPONSIBILITY
Anchoring a Chain
CHAIN OF RESPONSIBILITY without COMPOSITE
Summary '

13 FLYWEIGHT 139
Recognizing FLYWEIGHT
Immutability
Extracting the Immutable Part of a Flyweight
Sharing Flyweights
Summary

B PART ll CONSTRUCTION PATTERNS

14 INTRODUCING CONSTRUCTION 157
Ordinary Construction
Superclass Collaboration
Collaboration within a Class
Summary
Beyond Ordinary Construction
15 BuiLDER 157
Building from a Parser
Building under Constraints ‘
Building a Counteroffer
Summary

103
108
114

115
120
122
129

131
132
135
136
137

139
140
141
143
147

151
152
153
155
155

157
159
161
163

CONTENTS

16 FACTORY MEeTHOD 165

Recognizing FACTORY METHOD 165
A Classic Example of FACTORY METHOD: Iterators 167
Taking Control of Which Class to Instantiate 169
FACTORY METHOD in Parallel Hierarchies 171
Summary 173
17 ABSTRACT FACTORY 175
Abstract Factories for Families of Objects 175
Packages and Abstract Factories 179
Abstract Factories for Look-and-Feel 180
Summary 182
18 PROTOTYPE 183
Prototypes as Factories 183
Prototyping with Clones 185
Using Object.clone() 188
Summary 192
19 MemenTo 1793
Memento Durability 193
Applying Memento 194
Persisting Mementos across Sessions 197
Using Strings as Mementos 199
Summary 201

B PART IV OPERATION PATTERNS
20 INTRODUCING OPERATIONS 205

Operations, Methods, and Algorithms 205
The Mechanics of Methods 208
Exceptions in Methods 210
Summary 212
Beyond Ordinary Operators 213
21 TEMPLATE METHOD 215
A Classic Example of TEMPLATE METHOD: Sorting 215
Completing an Algorithm 218
TEMPLATE METHOD Hooks 221
Refactoring to TEMPLATE METHOD 222

Summary 224

xi

22 STATE 225
Modeling States
Refactoring to STATE
Making States Constant
Summary

23 STRATEGY 237
Modeling Strategies
Refactoring to STRATEGY
Comparing STRATEGY and STATE
Comparing STRATEGY and TEMPLATE METHOD
Summary

24 COMMAND 249
A Classic Example: Menu Commands
Using COMMAND to Supply a Service
COMMAND in Relation to Other Patterns
Summary

25 INTERPRETER 259
An INTERPRETER Example
Interpreters, Languages, and Parsers
Summary

B PART V EXTENSION PATTERNS
26 INTRODUCING EXTENSIONS 273

Reuse as an Alternative to Extension
Extending by Subclassing
The Liskov Substitution Principle
Extending by Delegating
Summary
Beyond Ordinary Extension

27 DECORATOR 289
A Classic Example of DECORATOR: Streams
Function Decorators
Decorating without DECORATOR
Summary

225
229
234
235

237
240
246
246
247

249
252
254
257

260
268
270

273
279
281
283
286
286

289
298
308
311

xil CONTENTS

28 ITERATOR 313

Type-Safe Collections 313
Iterating Over a Composite 318
Thread-Safe Iterators 329
Summary 335
29 VISITOR 337
Supporting VISITOR 337
Extending with VisiTOR 339
VisiTor Cycles 345
VisiTor Controversy 349
Summary 351

B PART VI APPENDIXES

A APPENDIX A: DIRECTIONS 355
B APPENDIX B: SOLUTIONS 359
C APPENDIX C: UML AT A GLANCE 441

Glossary 449
Bibliography 459

INTRODUCTION TO PATTERNS

Thus ook is for developers who know Java and who have had some
exposure to the book Design Patterns (Gamma et al. 1995). The premise of
this book is that you want to

» Deepen your understanding of the patterns that Design Patterns
describes

¢ Build confidence in your ability to recognize these patterns

* Strengthen your ability to apply these patterns in your own Java
programs

Why Patterns?

A pattern is a way of doing something, or a way of pursuing an intent.
This idea applies to cooking, making fireworks, developing software, and
to any other craft. In any craft that is mature or that is starting to mature,
you can find common, effective methods for achieving aims and solving
problems in various contexts. The community of people who practice a
craft usually invent jargon that helps them talk about their craft. This jar-
gon often refers to patterns, or standardized ways of achieving certain
aims. Writers document these patterns, helping to standardize the jargon.
Wiriters also ensure that the accumulated wisdom of a craft is available to
future generations of practitioners.

Christopher Alexander was one of the first writers to encapsulate a
craft’s best practices by documenting its patterns. His work relates to
architecture—of buildings, not software. A Pattern Language: Towns, Buildings,

INTRODUCTION TO PATTERNS

Construction (Alexander, Ishikawa, and Silverstein 1977) provides patterns for
architecting successful buildings and towns. Alexander’s writing is power-
ful and has influenced the software community, partially because of the
way he looks at intent.

You might state the intent of architectural patterns as “to design build-
ings.” But Alexander makes it clear that the intent of architectural pat-
terns is to serve and to inspire the people who will occupy buildings and -
towns. Alexander’s work showed that patterns are an excellent way to
capture and to convey the wisdom of a craft. He also established that
properly perceiving and documenting the intent of a craft is a critical,
philosophical, and elusive challenge.

The software community has resonated with Alexander’s approach and
has created many books that document patterns of software develop-
ment. These books record best practices for software process, software
analysis, and high-level and class-level design. Table 1.1 lists books that
record best practices in various aspects of software development. This list
of books is not comprehensive, and new books appear every year. If you
are choosing a book about patterns to read you should spend some time
reading reviews of available books and try to select the book that will
help you the most.

Why Design Patterns?

A design pattern is a pattern—a way to pursue an intent—that uses classes
and their methods in an object-oriented language. Developers often start
thinking about design after learning a programming language and writing
code for a while. You might notice that someone else’s code seems simpler
and works better than yours does, and you might wonder how that person
achieves this simplicity. Design patterns are a level up from code and typi-
cally show how to achieve a goal, using one to ten classes. Other people
have figured out how to program effectively in object-oriented languages.
If you want to become a powerful Java programmer, you should study
design patterns, especially those in Design Patterns.

