Ruby Cookbook (&enkg)

Cookboo

O’REILLY"

¥ &k "‘% bRk 4t Lucas Carlson & Leonard Richardson %

Web Programming

O’REILLY"
Ruby Cookbook (#Epkg)

PREH I Ruby (IR BM5? Ruby Cookbook gk & X Tix — 4 A FePh | 4 BE 15 75 9 ik 4 1 10 1) R K R
FE o AC 5 6 P 5 O 0 b R T4 T CATE PR 9 50 o 66 PR 08 AR B, e oAy €655 o 1 i o T it Bl 34
R8O A PR B ik 05 i . MBI 5 K B SE AT H R, Ruby Cookbook b — fif 4 #2
NG ERfEs T 2/, #)7F & MTEIRAY Ruby &K BT LA A 527 2] £ T 51| & @b 4 % Ruby %
BA MRS .

o FRFHRMBCTE o MR

o KAFEEE o [EHfg

o K bR a i o HIEMAR% ., fud f#E{E. SSH #1BitTorrent
o RSHHLEIF 4R e XML FIHTML ghF

¢ 1% * Ruby on Rails (145 Ajax k)

o [RTES RN £ b 5

MR RFTE AR HEEF, A4) (s an (] {8 FH Rails &R G577 %, RIRIRTE RS AL T

e, ACEE S URUR Aol Ruby 352 % ik X0 A8 £ % . 1738 ol LA 21 4nfal § 1) Ruby 1% 5 (4K Excel % 4%

XH, nfal M DI (Bayesian) of 28 it 17 3CA AR LR oo 5 PDF 3CfF, EEABLHMH-LE B

FERE, tbdndn(i ik (A e B ATIN IR A S .

BMEZ, RS A% T Ruby)45 41, Ruby Cookbook & i A IR — A, dn {7 E Mgtk — /> Ruby a4,

KAt iTEE 58D, MAREABS FHEARE LT,

Lucas Carlson & —{i7 &% T{# Rails i 174 FF & #9 & . Ruby F2IF 51, fte A2 6 4~ Ruby B FFMI(EE, thafit

fb 1R % FE#2 ¥ A1 BT sk, HEob €245 Rails UL & RedCloth,

Leonard Richardson i it /) % B 18 5 JF & fOde 4 By, Horp 045 Rubyful Soup,
‘BERFAARNOEETEZMARTULETN, MEESENARSHE—TXFHRE. ZEXFTIAD
FHiE. #H5. MlANEE. BERIEHEEN Ry REFANESER.”

— Yukihiro (Matz) Matsumoto, Ruby f{E#
RAAERENTERTREEGNEERE, & HXENLBREARA L THRANT MR BN E, B,
fhit, IRBXO. RENRERLE, L) BuTorrent IEFRURRERNBENIVEE, HXEHHIL
HX—FEFAE. FRARFERRFEHNETRAFNWART R BT, EELEARBNERN.”

— | — why the lucky stiff
ISBN 7-5641-0596-8 |

ISBN 7-5641-0596-8

R 98.00 A
Visit 0'Reilly on the Web at A 98.00 L

i WWW.0reilly.com O'Reilly Media, Inc. # i 4 % 4 t: Jiik Fik

8756471059697> HHEIRRRFESEEA (FaEEE. RISITERINASHR) 17

This Authorized Edition for sale only in the territory of People's Republic of China (excluding Hong Kong, Macao and Taiwan)

Ruby Cookbook (& Ensz)
Ruby Cookbook

Lucas Carlson & Leonard Richardson

O’REILLY*®

Beijing + Cambridge + Farnham -« Koin « Paris » Sebastopol « Taipei + Tokyo

O'Reilly Media, Inc. 84L& d & & b g4 i g

REAKXFH R

EHERKRE (CIP) ¥iE

Ruby 2§t = Ruby Cookbook / (%) ERZE
(Carison, L.), (32) BEZE{EFE (Richardson,) F. —
ENA . — Fnl: REKFEHRM, 2006.11

F4RL: Ruby Cookbook

ISBN 7-5641-0596-8

I.R. 1.0%.. OF.. I.%kE$FE-FET
IV . TP311.52

o EIRCA B 5 1 CIP BB T (2006) 55128239 &

ILHERRAURE B A FIRID
EF: 10-2006-259 &

©2006 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2006. Authorized reprint of the original English edition, 2006 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
% /R fi &y O'Reilly Media, Inc. # ¥& 2006,

ELHPIRD R b K F G I 2006, 3 H FR R &Y e RE Ao 4K 4 1 5] BB Fo 4K & B89 B & & —— O'Reilly
Media, Inc. &5+ 7T,

MRAHA, ABEBET, RHEHETRS oo R REUEITH X T4,

4 4/ Ruby Cookbook (BZE[IAR)

+; £/ ISBN 7-5641-0596-8

HHESH/ ki

#Mmi%kit/ Karen Montgomery, &

HRERFT/ @ A¥ Ikt (press.seu.edu.cn)

ub/ BERVIMEE 25 (ARBC4ED 210096)

B Bl P HENRIARA S

F A/ T8TEK x 980K 16 FF A& 56.75 Efigk
AR R/ 2006411 HE 1/ 20064 11 ¥ 1 kEDRI
EN %/ 0001-2500

E #r/ 98.005% (M)

O'Reilly Media, Inc.4T48

O'Reilly Media, Inc. 2t L7 UNIX, X, Internet fitfb F R AL B BETRAAF
G HR AR, FRRBYLHRIEE.

MBI 44 (The Whole Internet User's Guide & Catalog) (#:4H #7123t B BIEIEEH
ZHHEREENSOA 2 —) B GNN (B FEH Internet | 1ML M 3G), B2
WebSite (% — /M SLE PCHYWeb IR %5 83844), O'Reilly Media, Inc.—E #bF Internet
RBRHIBRATH.

W EHERRIRED, OReilly Media, Inc. R BB EHHANEBHRE —&—
AR —RER. SREHTEIEBHMEMEL, O'Reilly Media, Inc. RHHRE
MR E L H B, XER O'Reilly Media, Inc. BB T —AM4E¥ AR T H A iR
WIH AR B 4. O'Reilly Media, Inc. i A4t A RLAGTEIRBEF R, HHERMASK
I AREK, O'Reilly Media, Inc.BH W £ BEEMEERE — bNEFRMERXRH
BHRHEAETR. SRWER, MAEREEE, OReilly Media, Inc KM 1T #
HHEF, E% O'Reilly Media, Inc. REMHSH BNV REEEE, FiLL O'Reilly
Media, Inc.5nE Hiip LA EFEH 2B,

tH ki it A

BB T EVLBE AR BB Z R A, AREES AN HEARDERROFHI. TR
PLEERRIR RG AN Tk A7, #lkiEzh R W AEBEAR T EXNRZW. &,
TR L SRS AR B RE B 2 Pt B AR BT R S, S T B E R AR A REE —K
TRESMEFHEAR, REK¥EHREMEE OReilly Meida, Inc A bhil, Kb
SR ZATNRRAEERIEERXR TR FER BAEE, UREHREE B A
R EMESIRE . Kb, RORBHEHRERSIES ‘RSP HR, HE K
HEk” RIALKIEE.

BRMNF WAL, F5HrBHENENARTLAERA R, BB EA R
FE RN AR FE IR TARA A B, M BN R R R RAE PR, hELME
EERHE RN,

B AR A —#HRZENR B A5, B4R

o (AR Ajax) (BEVRR)

e (Ajax Hacks) (BENiR)

o (BEAHMR Linux MHNEY (HER)
o (WebRIHBARFM F=IRY (RER)
o (EREFMZARY (FENRR)

. {Ruby on Rails: Up and Running) (RZEIhR)
¢ {Ruby Cookbook) (EE[hR)

e (Python mEE F=KY (HEIR)

o (Python HiARFM &MY (FLEIR)

o (Ajax IR (FLENAR)

o (SCHEGmBEE®EY (REHKR)

o (HPRmEIRHERY (FER)

Preface

Life Is Short

This is a book of recipes: solutions to common problems, copy-and-paste code snip-
pets, explanations, examples, and short tutorials.

This book is meant to save you time. Time, as they say, is money, but a span of time
is also a piece of your life. Our lives are better spent creating new things than fight-
ing our own errors, or trying to solve problems that have already been solved. We
present this book in the hope that the time it saves, distributed across all its readers,
will greatly outweigh the time we spent creating it.

The Ruby programming language is itself a wonderful time-saving tool. It makes you
more productive than other programming languages because you spend more time
making the computer do what you want, and less wrestling with the language. But
there are many ways for a Ruby programmer to spend time without accomplishing
anything, and we’ve encountered them all:

* Time spent writing Ruby implementations of common algorithms.

* Time spent debugging Ruby implementations of common algorithms.

* Time spent discovering and working around Ruby-specific pitfalls.

* Time spent on repetitive tasks (including repetitive programming tasks!) that
could be automated.

* Time spent duplicating work that someone else has already made publicly available.
* Time spent searching for a library that does X.
* Time spent evaluating and deciding between the many libraries that do X.

* Time spent learning how to use a library because of poor or outdated
documentation.

* Time lost staying away from a useful technology because it seems intimidating.

XXi

We, and the many contributors to this book, recall vividly our own wasted hours
and days. We’ve distilled our experiences into this book so that you don’t waste your
time—or at least so you enjoyably waste it on more interesting problems.

Our other goal is to expand your interests. If you come to this book wanting to gen-
erate algorithmic music with Ruby then, yes, Recipe 12.14 will save you time over
starting from scratch. It’s more likely that you’d never considered the possibility until
now. Every recipe in this book was developed and written with these two goals in
mind: to save you time, and to keep your brain active with new ideas.

Audience

This cookbook is aimed at people who know at least a little bit of Ruby, or who
know a fair amount about programming in general. This isn’t a Ruby tutorial (see the
Resources section below for some real tutorials), but if you're already familiar with a
few other programming languages, you should be able to pick up Ruby by reading
through the first 10 chapters of this book and typing in the code listings as you go.

We've included recipes suitable for all skill levels, from those who are just starting
out with Ruby, to experts who need an occasional reference. We focus mainly on
generic programming techniques, but we also cover specific application frameworks
(like Ruby on Rails and GUI libraries) and best practices (like unit testing).

Even if you just plan to use this book as a reference, we recommend that you skim
through it once to get a picture of the problems we solve. This is a big book but it
doesn’t solve every problem. If you pick it up and you can’t find a solution to your
problem, or one that nudges you in the right direction, then you've lost time.

If you skim through this book once beforehand, you’ll get a fair idea of the problems
we cover in this book, and you’ll get a better hit rate. You’ll know when this book
can help you; and when you should consult other books, do a web search, ask a
friend, or get help some other way.

The Structure of This Book

Each of this book’s 23 chapters focuses on a kind of programming or a particular
data type. This overview of the chapters should give you a picture of how we divided
up the recipes. Each chapter also has its own, somewhat lengthier introduction,
which gives a more detailed view of its recipes. At the very least, we recommend you
skim the chapter introductions and the table of contents.

We start with six chapters covering Ruby’s built-in data structures.

* Chapter 1, Strings, contains recipes for building, processing, and manipulating
strings of text. We devote a few recipes specifically to regular expressions (Reci-
pes 1.17 through 1.19), but our focus is on Ruby-specific issues, and regular

wii | Preface

expressions are a very general tool. If you haven’t encountered them yet, or just
find them intimidating, we recommend you go through an online tutorial or
Mastering Regular Expressions by Jeffrey Friedl (O’Reilly).

* Chapter 2, Numbers, covers the representation of different types of numbers:
real numbers, complex numbers, arbitrary-precision decimals, and so on. It also
includes Ruby implementations of common mathematical and statistical algo-
rithms, and explains some Ruby quirks you’ll run into if you create your own
numeric types (Recipes 2.13 and 2.14).

* Chapter 3, Date and Time, covers Ruby’s two interfaces for dealing with time: the
one based on the C time library, which may be familiar to you from other program-
ming languages, and the one implemented in pure Ruby, which is more idiomatic.

* Chapter 4, Arrays, introduces the array, Ruby’s simplest compound data type.
Many of an array’s methods are actually methods of the Enumerable mixin; this
means you can apply many of these recipes to hashes and other data types. Some
features of Enumerable are covered in this chapter (Recipes 4.4 and 4.6), and
some are covered in Chapter 7.

* Chapter 5, Hashes, covers the hash, Ruby’s other basic compound data type.
Hashes make it easy to associate objects with names and find them later (hashes
are sometimes called “lookup tables” or “dictionaries,” two telling names). It’s
easy to use hashes along with arrays to build deep and complex data structures.

* Chapter 6, Files and Directories, covers techniques for reading, writing, and
manipulating files. Ruby’s file access interface is based on the standard C file
libraries, so it may look familiar to you. This chapter also covers Ruby’s stan-
dard libraries for searching and manipulating the filesystem; many of these reci-
pes show up again in Chapter 23.

The first six chapters deal with specific algorithmic problems. The next four are
more abstract: they’re about Ruby idiom and philosophy. If you can’t get the Ruby
language itself to do what you want, or you're having trouble writing Ruby code that
looks the way Ruby “should” look, the recipes in these chapters may help.

¢ Chapter 7, Code Blocks and Iteration, contains recipes that explore the possibili-
ties of Ruby’s code blocks (also known as closures).

* Chapter 8, Objects and Classes, covers Ruby’s take on object-oriented program-
ming. It contains recipes for writing different types of classes and methods, and a
few recipes that demonstrate capabilities of all Ruby objects (such as freezing
and cloning).

* Chapter 9, Modules and Namespaces, covers Ruby’s modules. These constructs
are used to “mix” new behavior into existing classes and to segregate functional-
ity into different namespaces.

* Chapter 10, Reflection and Metaprogramming, covers techniques for programati-
cally exploring and modifying Ruby class definitions.

Preface | i

Chapter 6 covers basic file access, but doesn’t touch much on specific file formats.
We devote three chapters to popular ways of storing data.

Chapter 11, XML and HTML, shows how to handle the most popular data inter-
change formats. The chapter deals mostly with parsing other people’s XML doc-
uments and web pages (but see Recipe 11.9).

Chapter 12, Graphics and Other File Formats, covers data interchange formats
other than XML and HTML, with a special focus on generating and manipulat-
ing graphics.

Chapter 13, Databases and Persistence, covers the best Ruby interfaces to data
storage formats, whether you’re serializing Ruby objects to disk, or storing struc-
tured data in a database. This chapter demonstrates everything from different
ways of serializing data and indexing text, to the Ruby client libraries for popu-
lar SQL databases, to full-blown abstraction layers like ActiveRecord that save
you from having to write SQL at all.

Currently the most popular use of Ruby is in network applications (mostly through
Ruby on Rails). We devote three chapters to different types of applications:

Chapter 14, Internet Services, kicks off our networking coverage by illustrating a
wide variety of clients and servers written with Ruby libraries.

Chapter 15, Web Development: Ruby on Rails, covers the web application frame-
work that’s been driving so much of Ruby’s recent popularity.

Chapter 16, Web Services and Distributed Programming, covers two techniques for
sharing information between computers during a Ruby program. In order to use a
web service, you make an HTTP request of a program on some other computer,
usually one you don’t control. Ruby’s DRb library lets you share Ruby data struc-
tures between programs running on a set of computers, all of which you control.

We then have three chapters on the auxilliary tasks that surround the main program-
ming work of a project.

Chapter 17, Testing, Debugging, Optimizing, and Documenting, focuses mainly
on handling exception conditions and creating unit tests for your code. There
are also several recipes on the processes of debugging and optimization.

Chapter 18, Packaging and Distributing Software, mainly deals with Ruby’s Gem
packaging system and the RubyForge server that hosts many gem files. Many
recipes in other chapters require that you install a particular gem, so if you’re not
familiar with gems, we recommend you read Recipe 18.2 in particular. The
chapter also shows you how to create and distribute gems for your own projects.

Chapter 19, Automating Tasks with Rake, covers the most popular Ruby build
tool. With Rake, you can script common tasks like running unit tests or packag-
ing your code as a gem. Though it’s usually used in Ruby projects, it’s a general-
purpose build language that you can use wherever you might use Make.

XXiv

| Preface

We close the book with four chapters on miscellaneous topics.

» Chapter 20, Multitasking and Multithreading, shows how to use threads to do
more than one thing at once, and how to use Unix subprocesses to run external
commands.

* Chapter 21, User Interface, covers user interfaces (apart from the web interface,
which was covered in Chapter 15). We discuss the command-line interface,
character-based GUIs with Curses and HighLine, GUI toolkits for various plat-
forms, and more obscure kinds of user interface (Recipe 21.11).

* Chapter 22, Extending Ruby with Other Languages, focuses on hooking up Ruby
to other languages, either for performance or to get access to more libraries.
Most of the chapter focuses on getting access to C libraries, but there is one rec-
ipe about JRuby, the Ruby implementation that runs on the Java Virtual
Machine (Recipe 22.5).

* Chapter 23, System Administration, is full of self-contained programs for doing
administrative tasks, usually using techniques from other chapters. The recipes
have a heavy focus on Unix administration, but there are some resources for
Windows users (including Recipe 23.2), and some cross-platform scripts.

How the Code Listings Work

Learning from a cookbook means performing the recipes. Some of our recipes define
big chunks of Ruby code that you can simply plop into your program and use with-
out really understanding them (Recipe 19.8 is a good example). But most of the reci-
pes demonstrate techniques, and the best way to learn a technique is to practice it.

We wrote the recipes, and their code listings, with this in mind. Most of our listings
act like unit tests for the concepts described in the recipe: they poke at objects and
show you the results.

Now, a Ruby installation comes with an interactive interpreter called irb. Within an
irb session, you can type in lines of Ruby code and see the output immediately. You
don’t have to create a Ruby program file and run it through the interpreter.

Most of our recipes are presented in a form that you can type or copy/paste directly
into an irb session. To study a recipe in depth, we recommend that you start an irb
session and run through the code listings as you read it. You’ll have a deeper under-
standing of the concept if you do it yourself than if you just read about it. Once
you’re done, you can experiment further with the objects you defined while running
the code listings.

Sometimes we want to draw your attention to the expected result of a Ruby expres-
sion. We do this with a Ruby comment containing an ASCII arrow that points to the
expected value of the expression. This is the same arrow irb uses to tell you the value
of every expression you type.

Preface | v

We also use textual comments to explain some pieces of code. Here’s a fragment of
Ruby code that I've formatted with comments as I would in a recipe:

1+2 #=>3

On a long line, the expected value goes on a new line:
Math.sqrt(1 + 2 +3 +4+5+6+7 + 8 +9 + 10)
=> 7.41619848709566

To display the expected output of a Ruby expression, we use a comment that has no
ASCII arrow, and that always goes on a new line:

puts "This string is self-referential."
This string is self-referential.

If you type these two snippets of code into irb, ignoring the comments, you can

check back against the text and verify that you got the same results we did:

$ irb

irb(main):001:0> 1 + 2

=> 3

irb(main):002:0> Math.sqrt(1 + 2+ 3 +4 +5+ 6 + 7 + 8 + 9 + 10)

=> 7.41619848709566

irb(main):003:0> puts "This string is self-referential.”

This string is self-referential.

=> nil
If you're reading this book in electronic form, you can copy and paste the code frag-
ments into irb. The Ruby interpreter will ignore the comments, but you can use
them to make sure your answers match ours, without having to look back at the text.
(But you should know that typing in the code yourself, at least the first time, is bet-
ter for comprehension.)

$ irb
irb(main):001:0> 1 + 2 #=>3
=>3
" irb(main):002:0>
irb(main):003:0* # On a long line, the expected value goes on a new line:
irb(main):004:0* Math.sqrt(1 + 2+ 3 + 4 +5+ 6 + 7 + 8 + 9 + 10)
=> 7.41619848709566
irb(main):005:0> # => 7.41619848709566
irb(main):006:0*
irb(main):007:0*% puts "This string is self-referential.”
This string is self-referential.
=> nil
irb(main):008:0> # This string is self-referential.

We don’t cut corners. Most of our recipes demonstrate a complete irb session from
start to finish, and they include any imports or initialization necessary to illustrate the
point we're trying to make. If you run the code exactly as it is in the recipe, you should
get the same results we did." This fits in with our philosophy that code samples should

* When a program’s behavior depends on the current time, the random number generator, or the presence of
certain files on disk, you might not get the exact same results we did, but it should be similar.

xxvi | Preface

be unit tests for the underlying concepts. In fact, we tested our code samples like unit
tests, with a Ruby script that parses recipe texts and runs the code listings.

The irb session technique doesn’t always work. Rails recipes have to run within
Rails. Curses recipes take over the screen and don’t play well with irb. So sometimes
we show you standalone files. We present them in the following format:

#!/usr/bin/Tuby -w
sample_ruby file.rb: A sample file

142

Math.sqrt(1 + 2 + 3 +4+5+6 +7 + 8+ 9+ 10)

puts "This string is self-referential.”
Whenever possible, we’ll also show what you’ll get when you run this program:
maybe a screenshot of a GUI program, or a record of the program’s output when run
from the Unix command line:

$ ruby sample_ruby file.rb

This string is self-referential.
Note that the output of sample_ruby file.rb looks different from the same code
entered into irb. Here, there’s no trace of the addition and the square root opera-
tions, because they produce no output.

Installing the Software

Ruby comes preinstalled on Mac OS X and most Linux installations. Windows
doesn’t come with Ruby, but it’s easy to get it with the One-Click Installer: see http://
rubyforge.org/projects/rubyinstaller/.

If you’re on a Unix/Linux system and you don’t have Ruby installed (or you want to
upgrade), your distribution’s package system may make a Ruby package available.
On Debian GNU/Linux, it’s available as the package ruby-[version]: for instance,
ruby-1.8 or ruby-1.9. Red Hat Linux calls it ruby; so does the DarwinParts system on
Mac OS X.

If all else fails, download the Ruby source code and compile it yourself. You can get
the Ruby source code through FTP or HTTP by visiting http://www.ruby-lang.org/.

Many of the recipes in this book require that you install third-party libraries in the
form of Ruby gems. In general, we prefer standalone solutions (using only the Ruby
standard library) to solutions that use gems, and gem-based solutions to ones that
require other kinds of third-party software.

If you’re not familiar with gems, consult Chapter 18 as needed. To get started, all
you need to know is that you first download the Rubygems library from http://
rubyforge.org/projects/rubygems/ (choose the latest release from that page). Unpack

Preface | il

the tarball or ZIP file, change into the rubygems-[version] directory, and run this
command as the superuser:

$ ruby setup.rb

The Rubygems library is included in the Windows One-Click Installer, so you don’t
have to worry about this step on Windows.

Once you've got the Rubygems library installed, it’s easy to install many other pieces
of Ruby code. When a recipe says something like “Ruby on Rails is available as the
rails gem,” you can issue the following command from the command line (again, as
the superuser):

$ gem install rails --include-dependencies

The RubyGems library will download the rails gem (and any other gems on which it
depends) and automatically install them. You should then be able to run the code in
the recipe, exactly as it appears.

The three most useful gems for new Ruby installations are rails (if you intend to cre-
ate Rails applications) and the two gems provided by the Ruby Facets project:
facets_core and facets_more. The Facets Core library extends the classes of the Ruby
standard library with generally useful methods. The Facets More library adds entirely
new classes and modules. The Ruby Facets homepage (http://facets.rubyforge.org/)
has a complete reference.

Some Ruby libraries (especially older ones) are not packaged as gems. Most of the
nongem libraries mentioned in this book have entries in the Ruby Application
Archive (http://raa.ruby-lang.org/), a directory of Ruby programs and libraries. In
most cases you can download a tarball or ZIP file from the RAA, and install it with
the technique described in Recipe 18.8.

Platform Differences, Version Differences,
and Other Headaches

Except where noted, the recipes describe cross-platform concepts, and the code itself
should run the same way on Windows, Linux, and Mac OS X. Most of the platform
differences and platform-specific recipes show up in the final chapters: Chapter 20,
Chapter 21, and Chapter 23 (but see the introduction to Chapter 6 for a note about
Windows filenames).

We wrote and tested the recipes using Ruby version 1.8.4 and Rails version 1.1.2, the
latest stable versions as of the time of writing. In a couple of places we mention code
changes you should make if you’re running Ruby 1.9 (the latest unstable version as
of the time of writing) or 2.0.

xwiii | Preface

Despite our best efforts, this book may contain unflagged platform-specific code, not
to mention plain old bugs. We apologize for these in advance of their discovery. If
you have problems with a recipe, check out the eratta for this book (see below).

In several recipes in this book, we modify standard Ruby classes like Array to add
new methods (see, for instance, Recipe 1.10, which defines a new method called
String#capitalize_first_letter). These methods are then available to every
instance of that class in your program. This is a fairly common technique in Ruby:
both Rails and the Facets Core library mentioned above do it. It’s somewhat contro-
versial, though, and it can cause problems (see Recipe 8.4 for an in-depth discus-
sion), so we felt we should mention it here in the Preface, even though it might be
too technical for people who are new to Ruby.

If you don’t want to modify the standard classes, you can put the methods we dem-
onstrate into a subclass, or define them in the Kernel namespace: that is, define
capitalize_first_letter of string instead of reopening String and defining
capitalize_first letter inside it.

Other Resources

If you need to learn Ruby, the standard reference is Programming Ruby: The Prag-
matic Programmer’s Guide by Dave Thomas, Chad Fowler, and Andy Hunt (Prag-
matic Programmers). The first edition is available online in HTML format (http://
www.rubycentral.com/book/), but it’s out of date. The second edition is much better
and is available as a printed book or as PDF (http://www.pragmaticprogrammer.com/
titles/ruby/). 1t’s a much better idea to buy the second edition and use the first edi-
tion as a handy reference than to try to read the first edition.

“Why’s (Poignant) Guide to Ruby,” by “why the lucky stiff,” teaches Ruby with stories,
like an English primer. Excellent for creative beginners (http://poignantguide.net/ruby/).

For Rails, the standard book is Agile Web Development with Rails by Dave Thomas,
David Hansson, Leon Breedt, and Mike Clark (Pragmatic Programmers). There are
also two books like this one that focus exclusively on Rails: Rails Cookbook by Rob
Orsini (O'Reilly) and Rails Recipes by Chad Fowler (Pragmatic Programmers).

Some common Ruby pitfalls are explained in the Ruby FAQ (http://www.rubycentral.
com/faq/, starting in Section 4) and in “Things That Newcomers to Ruby Should
Know” (http://www.glue.umd.edu/~billtj/ruby.html).

Many people come to Ruby already knowing one or more programming languages.
You might find it frustrating to learn Ruby with a big book that thinks it has to teach
you programming and Ruby. For such people, we recommend Ruby creator Yukihiro
Matsumoto’s “Ruby User’s Guide” (http://www.ruby-doc.org/docs/UsersGuidelrg/). It’s
a short read, and it focuses on what makes Ruby different from other programming
languages. Its terminology is a little out of date, and it presents its code samples

Preface | xxix

through the obsolete eval.rb program (use irb instead), but it’s the best short intro-
duction we know of.

There are a few articles especially for Java programmers who want to learn Ruby: Jim
Weirich’s “10 Things Every Java Programmer Should Know About Ruby” (http://
onestepback.org/articles/10things/), Francis Hwang’s blog entry “Coming to Ruby
from Java” (http://fhwang.net/blog/40.html), and Chris Williams’s collection of links,
“From Java to Ruby (With Love)” (http://cwilliams.textdriven.com/pagesfjava_to_ruby)
Despite the names, C++ programmers will also benefit from much of what’s in these
pieces.

The Ruby Bookshelf (http://books.rubyveil.com/books/Bookshelf/Introduction/Bookshelfy
has produced a number of free books on Ruby, including many of the ones men-
tioned above, in an easy-to-read HTML format.

Finally, Ruby’s built-in modules, classes, and methods come with excellent docu-
mentation (much of it originally written for Programming Ruby). You can read this
documentation online at http://www.ruby-doc.org/core/ and http:/fwww.ruby-doc.org/
stdlib/. You can also look it up on your own Ruby installation by using the ri com-
mand. Pass in the name of a class or method, and ri will give you the corresponding
documentation. Here are a few examples:

$ ri Array # A class
$ ri Array.new # A class method
$ ri Array#compact # An instance method

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).
Italic
Indicates new terms, URLs, email addresses, and Unix utilities.
Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, programs, librar-
ies, filenames, pathnames, directories, the contents of files, or the output from
commands.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic
Shows text that should be replaced with user-supplied values.

ox | Preface

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Ruby Cookbook, by Lucas Carlson
and Leonard Richardson. Copyright 2006 O’Reilly Media, Inc., 0-596-52369-6.”

If you feel your use of code examples falls outside fair use or the permission glven
above, feel free to contact us at permissions@oreilly.com.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/rubyckbk
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

hitp://www.oreilly.com

Acknowledgments

First we'd like to thank our editor, Michael Loukides, for his help and for acquiesc-
ing to our use of his name in recipe code samples, even when we turned him into a
talking frog. The production editor, Colleen Gorman, was also very helpful.

Preface | oo

