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PREFACE

Dj\.'fferential topology may be defined as the study of those proper-
ties of differentiable manifolds which are invariant under differentiable
homeomorphisms. Problems in this fleld arise from the interplay between the
topological, cambinatorial, and differentisble structures of a manifold.
They do not, however, involve such notions as connections, geodesics, curva-
ture, and the 1ike; in thls way the subject may be distinguished from dif-
ferential geometry.

One par\;icula.r flowering of the subject took place in the 1930's,
with work of H. Whitney, 8. S. Cairns, and J. H. C. Whitehead. A second
flowering has came more recently, with the excliting work of J. Milnor, R.
Thom, 3. Smale, M. Kervaire, and others. The later work depends on the
earlier, of course, but differs from it in many ways, most particularly in

the extent to which it uses the results and methods of algebraic topology.
The earlier work is more exclusively gecmetric in nature, and 1s thus in
sane senae more elementary. ,

One may make an analogy with the discipline of Mutber Theory, in
which a theorem is called elementm" -1f its proof involves no use of the
theory of functions of a camplex variable '_.Iotherwise the proof 1s said to be’
non-elementary. As one 1s well aware, the terminology does not reflect the
difficulty of the proof in question, the elementary proofs often being harder
than the others.

It 1s in a similar sénse that we speak of the elementary part of
differential topology. This is the subject of the present set of notes.

Since our theorems and proofs (with one small excépti—on) \dll in-
volve no algebraic topology, the background we expect of the 'read_er consists
of a working knowledge of: the calculus of functions of several variables
and the assoclated linear algebra, point-set topology, and, for Chapter IT,
the geometry (not the aiaebra) of simplicial complexes. Apart-from these
topics, the present notes endeavor to be self-contained. )

The reader will not find them especially elegant, however. We are
vii



not hoping to write anything like the definitive work, even on the most
elementary . aspects of the subject. Rather our hope is to provide a set of
notes fram which the student may acquire a feeling for differential topology,
at least in its geometric aspects. For this purpose, it 1s necessary that
the student work diligently through the exercises end problems scattered
throughout the notes; they were chosen with this object in mind.

o The word problem is used to label an exercise for which elther

the result itself, or the proof, 1s of particular interest or difficulty.
Even the best student will find some challenges in the set of problems. ’
Those problems and exercises which are not essential to the logical continui-
ty of the subject are marked with an asterisk.

A second object of these notes 1s to provide, in more accessible
form thaﬁ heretofore, proofs of a few of the basic often-used-but-seldom-
proved facts about differentisble manifolds. Treated in the first chapter
are the body of theorems which state, roughly speaking, that any result
which holds for manifolds and maps which are infinitely differentiable holds
also if lesser degrees of differentiabllity .are assumed. Proofs of these
theorems have been part of the "folk-literature" for same time; only recent-
1y has anyone written them down. ([8] and [9).) (The stronger thecrems of
Whitney, concerning analytic manifolds, require quite different proofs,
which appear in his classical paper [15].)

In a sense these results are negative, for they declare that nothing
really interesting occurs between manifolds of class ¢' and those of class
C”. However, they are still worth proving, at least partly for the tech-
niques involved.

The second chapter is devoted to proving the existence and unique-
ness of a smooth triangulation of a differentiable manifold. In this, we
follow J. H. C. Whitehead [14], with scme modifications. The result itself
is one of the most useful tools of differentlal topology, while the tech-
niques involved are essential to anyone studying both combinatorial and
differentisble structures on a manifold. The reader whose primary interest
is in triangulations may omit §4, §5, and §6 with 1little loss of continuity.

We have made a consclious effort to avoid any more overlap with the

lectures on differential topology [4]} given by Milnor at Princeton in 1958
viii



than was necessary. It is for this reason that we amit a proof of Whitney's
imbedding theorem, contenting ourselves with a weaker one. We hope the
reader will find our notes and Milnor's to be useful sum;lements to each
other.
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CHAPTER I.
DIFFERENTIABLE MANIFOLDS

§1. Introduction.

This sectjon is devoted to defining such basic concepts as those of
differentiable manifold, differentiable map, immersion, imbedding, and dif-
fecmorphism, and to proving the implicit function theorem.

We consider the euclidean space Rm as the space of all infinite
sequences of real numbers, X = (x'I , x? s +-+), such that =t
1> m; euclidean half-space H" 1s the subset of R" for which x" > O.
“ Then R*' ¢ H® C R®. We denote J((x’)2 e+ (X% by Ixl, am
max |x|, by Ix|. The unit sphere S 1s the subset of R® with
Ixf = 1; the unit ball B®, the set with |x| < 1; and the r-cube C™(r)

is the set with |x| < r. Often, we also consider R® as simply the space

= 0 for

of all m-tuples (x' pove ,xm) , Where no confusion will arise.

1.1 Definition. A (topological) manifold M is a Hausdorff space
with a countable basis, satisfying the following conditinon: There is an in-
teger m such that each point of M has a neighborhood hoameamorphic with
an open subset of  or of R%.

If h:U = H (or R 1s a homeamorphism of the neighborhood U
of x with an open set in H® or R™, the palr (U,h) 1s often called a
coordinate neighborhood on M. If h(U) is open in K" and h(x) les in
Rm", " then x 1is called a boundary point of M, and the set of all such
points is called the boundary of M, denoted by Bd M. If Bd M 1s empty,

we say M 1s non-bounded. (In the literature, the word manifold is common-
" 1y used only vhen Bd M 1s empty; the more inclusive term then is manifold-

3



b I. DIFFERENTIABLE MANIFOID3

with-boundary.) The set M - BA M is calle;l the interior of M, and is
denoted by Int M. (If A 1s a subset of the topological space X, we
alsouse Int A tomean X - Cf£(X-A), but this should cause no confusion.)

To justify these definiticns, we must note that if h, : U, — H®
end h, : U,— H" are homeomorphisms of nelghborhoods of x with open sets
in HY, and i1f h,(x) lies in R™', so0 does h,(x): For otherwise, the
map h~|h;l would give a homecmorphism of an open set in RT with a neigh-
borhood of the point p = h.‘(x) in H®. The latter neighborhood 1s certain-
1y not open in R®, contradicting the Brouwer theorem on invariance of
domain [3, p. 951.

One may also verify that the mmber m 1s uniquely determined by
M; it 1s celled the dimension of M, and M 1s called an m-manifold.
This may be done either by using the Brouwer theorem on invariance of domain,
or by applying the theorem of dimension theory which states that the topo-
loglcal dimension of M 1s m [3, p. 4E]l. Strictly speaking, to apply the
latter theorem we need to know that M 1s & separable metrizeble space; but
this follows from a stendard metrization theorem of polnt-set topology (2,
p. 751.

It also follows from a standard theorem that M 1is paracompact [e2,
p. 79). We remind the reader that this means that for any open covering @
of M, there is another such collection @® of open sets covering M such
that

(1) The collection @ 1s a refinement of the first, 1.e., every ele-
ment of ® 1s contained in an element of @.
(2) The collection @ is locally-finite, i.e., every point of M has

a nelghborhood intersecting only finitély meny elements of & .
In passing, let us note that because M has a countable basis, any locally-
finite open covering of M must be countable. »

(a) Exercise. If M is an m-manifold, show that Bd M is & non-
bounded m-1 manifold or is empty.

(b) Exercise. Iet M be an m-manifold with non-empty boundary.
Let My =Mx0 and M, = Mx 1 be two coples of M. The double of M,
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denoted by D(M), is the topological space obtalned fram M, UM, by identi-
fying (x,0) with (x,1) for each x in Bd M. Prove that M is a non-
bounded manifold of dimenslon m.

{(c) Exercise. If M and N are manifolds of dlmensions m &nd
n, respectively, then M x N is a manifold of dimension m + n, and
JBA(M x N) = ((BA M) x M) U (M x (BA N)).

1.2 Definition. If U 1is an open subset of R®, then f : U-—+R"
1s differentisble of class C° if the partlal derivatives of the coamponent
functions f',...,f® through order r are continuous on U. If f is of.
class CF for all finlte r, 1t is said to be of class C".

If A 1s any subset of R®, then f : A— R 1s differentiable
of class ¥ (1 {r < w 1if f may be extended to a neighborhood U of
A in R® so thst the extended function 1s of class C° on U. In practice,
we will apply this definition only (1) when A 1s an open subset of Hm,
eand (2) when A is & closed rectilinear simplex in R©.

If £ :A—RP is differentisble, and x 1s in A, we use Df(x)
to denote the Jacoblen matrix of f at x — the matrix whose general entry
i3 &gy = arl/ax). We also use the notation Bf’,...,fn/B(x',.. ., for
this matrix. Now f must be extended to a neighborhood of A before these
partials are defined; in the two cases of interest, the partials are inde-
pendent of the choice of extenalon (see Exercise (b)).

We recall here the chain rule for derivatives, which states that
D(fg) = Df - Dg, where fg 1s the camposite function, and the dot indicates
matrix maltiplication.

(a) Exercise. Check that differentiability is well-defined; i.e.,
that the differentiability of f : A~ R" does not depend on which "contain-
ing space" R® for A 1s chosen.

(b) Exercise. Let A be open in HY, or be a closed rectilinear
m-simplex in R®. If £ : A—R® is of class C', and x 1s in A, show
that Df(x) 4is independent of the extension of f to a neighhorhood of A
in R whieh is obosen.
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(c) Exercise*. Find an open subset U of R? and a G map
f : A=R (vhere A = T) such that the conclusion of the theorem in Exercise

(b) fails.

Remark. Let f map the subset A of R™ dinto R%. If A is
open in Rm, 1t is clear that f 1s differentiable if it is locally dif-
ferentiable, 1.e., if each point of A has a neighborhood V such that
f| Vn A 1is differentiable. However, 1f A 1is not open in Rm, this is
not nearly so clear; it needs veriflcation, which is supplied by the follow-

ing three lemmas.

1.3 lemma. There 1s & C° function 9 : R®=+R' which equals 1
on C(1/2), 4is positive on the interior of C(1), and 1s zero outside C(1).

Proof. let f£(t) =e '/ for t>o0, and £(t) =0 for t<o.
Then f is a C” function which 1s positive for ¢ > oO.

Iet g(t) = £{t)/(£(t) + £(1-t)). Then g 1s a C° function such
that g(t) =0 for t <o, g'(t) >0 for 0<t<1, and g(t) =1 for

t> 1.
Let h(t) = g(2t+2) g(-2t + 2). Then h is a C* function such

I
that h(t) = 0 for |t| > 1, h(t) >0 for [t| <1, and h(t) =1 for
It] < 1/2.

Y y
y = glt) ‘ y= h(t)

Iet o(x',...,#) = h(x") + h(zx®) «-- ().

(a) Exercise. Generalize the preceding lemma as follows: let U
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be an open subset of Rm; let C be a compact subset of U. There is a
¢¥ real-valued function ¥ defined on R" such that ¥ 1is positive on C
and is zero in a neighborhood of the complement of U.

Remark. Whenever an indexed collection {Cil of subsets of X 1is
ssld to be locally-finite, we shall mean by this that every point of X has
a neighborhood intersecting Ci for at most finitely many values of 1.
This convention is convenient, for otherwlse a given set could appear in the

sequence C,,C,, ... infinitely many times.

1.4 Jletma. Let [Ui} be & locally-finite open covering of the
topological manifold M. There is a covering (Ci] of M by closed sets
such that C, C U; for each 1.

Proof. We construct this covering by induction. Iet V, be an
open set containing M - (U2 u U3 U...), whose closure 1s contained in TU,.
(We use normality of M at this point.) Iet C, = V,.

Suppose V,U...U VJ_1U UJU... = M. ILet VJ be an open set contain-
ing

M- (VeUe. UV (U TgU..0)
whose closure is contained in UJ. Iet Cy = VJ.

To prove that the collection [VJ] covers M, note that any point
x 1lies in only finitely many sets U,. Hence for same J, x is not in
UJU UJ+1U"' . As a result, x must belong to V,U...U VJ_.“ by the induc-
tion hypothesis.

1.5 lemma. Iet A be a subset of Rm;r let £ : A=R® Then f
is of class C* 1if 1t 1s lgeally of class C .

Proof. By hypothesis, for each point x .of A, there 1s a neigh-
borhood U, of x such that flANn U, may be extended to a function which
1s of class C° on Ux' We choose Ux to be compact. Iet M be the union
of the sets U,; 1t is an open subset of Rm Let vy} vea locally-
finite open refinement of the covering (Ux) of M. Let (cil be a cover-

ing of M by closed sets such that C; CV, for each 1. ILet ¥; bea c®
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function defined on R™ which is positive on Ci and equals zero in &
neighborhood of the camplement of V;. Then z ‘!j(x) is a C” function on
M, since it equals a finite sum in some neighkerhood of any glven point of
M. Define q>1(x) = !1(:()/2 !J(x); then I :pi(x) = 1.

For each 1, let f; denote & C' extension of flANYV; to V;
if An Vi is empty, let fi be the zero function. Then q’ifi may be ex-
tended to be of class ¢ on M by letting it equal zero outside Vy.
Define

Bx) = Iy op(x) £3(x) .
This 1s & finite sum in some neighborhcod of any point x of M, and hence
is of class C” on M. Furthermore, if x 1sin A, then f,(x) = f(x)
for every 1, sor that .

Fx) = Toy(x) £(x) = £(x) .
Hence © 1s the required C¥ extension of f to the neighborhood M of A

in R®.

1.6 Definition. A differentisble m-manifold of class C' 1s an

m-manifold M and a differentisble structure D of class C° on M. A

differentisble structure of class C° on M, in turn, is a cocllection of

coordinate nelghborhoods” YU,h) on M, satisfying three conditions:
(1) The coordinate neighborhoods in 3 cover M.
(2) If (U;,h,) and (U,,h;) belong to D, then

-1
nyhy': by (U N Uy) - R or B

is differentiable of class CT.

(3) The collection O is maximal with respect to property (2); i.e.,
if any coordinate neighborhood not in ® 1s adjolned to the collection D,
then property (2) fails.
The elements of ® are often called coordinate systems on the differentiable

manifold M.

(a) Exercise. Let D' be a collection of coordinate neighborhoods
on M satisfying (1) and (2). Prove there is a unique differentlable struc-
ture D of class €' containing D'. (We call D' a basis for D, by
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analogy with the relation between a basis for a topology and the topology.)

Hint: Let P consist of all coordinate neighborhoods (U,h) on
M which overlap every element of ®' differentiably with class C¥; this
means that for each element (U1 ,h‘) of D',

. mh™' : nUnU) - or R

nhy' : n(UAU) =>HE or RU

are differentiable of class CT. To prove that ® is a differentisble
structure, you will need Lemms 1.5.

{b) Exercise. let M be a differentiable manifold of class vl
(we often suppress mention of the differentiable structure P, where no
confusion will arise). Then M may also be cansldered to be a differenti-
able manifold of class Cr'1, in a hatural way; one merely takes 9 as a
basis for a differentiable structure I, of class ¢! on M Verify
that the inclusion ® C D, 'is proper. This proves that the class C* of &
differentiable manifold is uniquely determined.

We see in this way that the class of a differentiable manifold M
may be lowered as far as one likes merely by adding new coordinate systems
to the differentiable structure. The reverse 1s also true, but it will re-
quire much work to prove.

(c) Exercise'. If M 1sa differentiable manifold, what are the
difficulties involved in putting a differentisble structure on D(M)? (D(M)
was defined in Exercise (b) of 1.1.)

1.7 Definition. Iet M and N be differentiable manifclds, of
dimensions m and n, respectively, and of class at least cT. Iet A be
& subset of M and let f : A N; then f 1is sald to be of class et 1r
for eyery pair (U,h) and (V,k) of coordinate systems of M and N, res-
pectively, the composite

kh™' : n(a n ) - RY
isof class C'. (Note that a map of class C2 1s also of class C', al-
though & manifold of class C° 1s not one of class C' until the differ-
entiable structure 1s changed.)

The rank of f at the point p. of M ig the rank of D(kfh™'),
where (U,h) and (V,k) are coordinate systems about p and f(p),
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respectively. This mmber is well-defined, for 1if (U,,h) anmd (V,,k)
were other such coordinate systems, we would have

D(k,n;') = D(k k") - D(kfh™') - D(mn]")
The requirements for a differentiasble structure assure that k.'k'1 and
](1:1"I are both differentisble, so that D( k1k'1) is non-singular, having
D(kk}") as its inverse. Similarly, D(hh]') is non-singular, so D(k,th]")
and D(kfh™') have the seme rank.

(a) Exercise. The standard C® differentisble structure on R®
1s that having as basis the single coordinate system 1 : R = R, Similar-
1y for H™. 1If one of the spaces M or N in the preceding definition is
R® or Hm, check that the definitions of differentiability given in 1.2

and 1.7 agree.

1.8 Definition. Iet f : M— N be differentiable of class C ;
let M and N bhave dimensions m and n, respectively. If rank fam
at each point p of M, f 1s said to be an immersion. If f 1is & homeo-
morphism (into) and is an immersion, it is called an imbedding. If f 1is a
homeamorphism of M onto N and 1s an immersion, 1t is called diffecmor-

phism; of course, m =n 1in this case.

(8) Exercise. Note that BA H® = R*' and the inclusion
R*' = B® 1s an imbedding. Generalize this as follows: If M is a differ-
entiable manifold of class Cr, then there 1s a unique differentiable struc-
ture of class C* on Bd M such that the vinclusion BAM—+M i1sa CF
imbedding.

(b) Exercise. Let M and N have class C'; let M be non-
bounded. Construct a C* differentiable structure cn M x N such that the
natural inclusions of M and N into M x N are imbeddings. Why do we
require M ) to be non-bounded?

7 (c) Exercise. Show that the composition of two lmmersions is an

immersion.
(4) Exercise*. Construct a € 4immersion of S‘I into R2 which



