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Preface

This book is meant as a short text in linear algebra for a one-term
course. Except for an occasional example or exercise the text is logically
independent of calculus, and could be taught early. In practice, I expect
it to be used mostly for students who have had two or three terms of
calculus. The course could also be given simultaneously with, or im-
mediately after, the first course in calculus.

I have included some examples concerning vector spaces of functions,
but these could be omitted throughout without impairing the under-
standing of the rest of the book, for those who wish to concentrate
exclusively on euclidean space. Furthermore, the reader who does not
like n = n can always assume that n =1, 2, or 3 and omit other interpre-
tations. However, such a reader should note that using n = n simplifies
some formulas, say by making them shorter, and should get used to this
as rapidly as possible. Furthermore, since one does want to cover both
the case n=2 and n=3 at the very least, using n to denote either
number avoids very tedious repetitions.

The first chapter is designed to serve several purposes. First, and
most basically, it establishes the fundamental connection between linear
algebra and geometric intuition. There are indeed two aspects (at least)
to linear algebra: the formal manipulative aspect of computations with
matrices, and the geometric interpretation. I do not wish to prejudice
one in favor of the other, and I believe that grounding formal manipula-
tions in geometric contexts gives a very valuable background for those
who use linear algebra. Second, this first chapter gives immediately
concrete examples, with coordinates, for linear combinations, perpendicu-
larity, and other notions developed later in the book. In addition to the
geometric context, discussion of these notions provides examples for
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subspaces, and also gives a fundamental interpretation for linear equa-
tions. Thus the first chapter gives a quick overview of many topics in
the book. The content of the first chapter is also- the most fundamental
part of what is used in calculus courses concerning functions of several
variables, which can do a lot of things without the more general ma-
trices. If students have covered the material of Chapter I in another
course, or if the instructor wishes to emphasize matrices right away, then
the first chapter can be skipped, or can be used selectively for examples
and motivation.

After this introductory chapter, we start with linear equations,
matrices, and Gauss elimination. This chapter emphasizes computational
aspects of linear algebra. Then we deal with vector spaces, linear maps
and scalar products, and their relations to matrices. This mixes both the
computational and theoretical aspects.

Determinants are treated much more briefly than in the first edition,
and several proofs are omitted. Students interested in theory can refer to
a more complete treatment in theoretical books on linear algebra.

I have included a chapter on eigenvalues and eigenvectors. This gives
practice for notions studied previously, and leads into material which is
used constantly in all parts of mathematics and its applications.

I am much indebted to Toby Orloff and Daniel Horn for their useful
comments and corrections as they were teaching the course from a pre-
liminary version of this book. I thank Allen Altman and Gimli Khazad
for lists of corrections.
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CHAPTER |

Vectors

The concept of a vector is basic for the study of functions of several
variables. It provides geometric motivation for everything that follows.
Hence the properties of vectors, both algebraic and geometric, will be
discussed in full.

One significant feature of all the statements and proofs of this part is

that they are neither easier nor harder to prove in 3-space than they are
in 2-space.

I, §1. Definition of Points in Space

We know that a number can be used to represent a point on a line,
once a unit length is selected.

A pair of numbers (i.e. a couple of numbers) (x, y) can be used to
represent a point in the plane.

These can be pictured as follows:

yr—-—-1@v

yp———

0 z i
(a) Point on a line (b) Point in a plane
Figure 1

We now observe that a triple of numbers (x,y,z) can be used to
represent a point in space, that is 3-dimensional space, or 3-space. We
simply introduce one more axis. Figure 2 illustrates this.
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y-axis

z-axis

Figure 2

Instead of using x, y, z we could also use (xy, x,, x3). The line could
be called 1-space, and the plane could be called 2-space.

Thus we can say that a single number represents a point in 1l-space.
A couple represents a point in 2-space. A triple represents a point in 3-
space.

Although we cannot draw a picture to go further, there is nothing to
prevent us from considering a quadruple of numbers.

(xl’ X2, X3, x4)

and decreeing that this is a point in 4-space. A quintuple would be a
point in 5-space, then would come a sextuple, septuple, octuple,....

We let ourselves be carried away and define a point in n-space to be
an n-tuple of numbers

(xly Xz, ...,X,,),

if n is a positive integer. We shall denote such an n-tuple by a capital
letter X, and try to keep small letters for numbers and capital letters for
points. We call the numbers x,,...,x, the coordinates of the point X.
For example, in 3-space, 2 is the first coordinate of the point (2, 3, —4),
and —4 is its third coordinate. We denote n-space by R"

Most of our examples will take place when n =2 or n = 3. Thus the
reader may visualize either of these two cases throughout the book.
However, three comments must be made.

First, we have to handle n = 2 and n = 3, so that in order to avoid a
lot of repetitions, it is useful to have a notation which covers both these
cases simultaneously, even if we often repeat the formulation of certain
results separately for both cases.
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Second, no theorem or formula is simpler by making the assumption
that n =2 or 3.

Third, the case n = 4 does occur in physics.

Example 1. One classical example of 3-space is of course the space we
live in. After we have selected an origin and a coordinate system, we can
describe the position of a point (body, particle, etc) by 3 coordi-
nates. Furthermore, as was known long ago, it is convenient to extend
this space to a 4-dimensional space, with the fourth coordinate as time,
the time origin being selected, say, as the birth of Christ—although this
is purely arbitrary (it might be more convenient to select the birth of the
solar system, or the birth of the earth as the origin, if we could deter-
mine these accurately). Then a point with negative time coordinate is a
BC point, and a point with positive time coordinate is an AD point.

Don’t get the idea that “time is the fourth dimension”, however. The
above 4-dimensional space is only one possible example. In economics,
for instance, one uses a very different space, taking for coordinates, say,
the number of dollars expended in an industry. For instance, we could
deal with a 7-dimensional space with coordinates corresponding to the
following industries:

1. Steel 2. Auto 3. Farm products 4. Fish
5. Chemicals 6. Clothing 7. Transportation.

We agree that a megabuck per year is the unit of measurement. Then a
point

(1,000, 800, 550, 300, 700, 200, 900)

in this 7-space would mean that the steel industry spent one billion
dollars in the given year, and that the chemical industry spent 700 mil-
lion dollars in that year.

The idea of regarding time as a fourth dimension is an old one.
Already in the Encyclopédie of Diderot, dating back to the eighteenth
century, d’Alembert writes in his article on “dimension™:

Cette maniére de considérer les quantités de plus de trois dimensions est
aussi exacte que l'autre, car les lettres peuvent toujours étre regardées
comme représentant des nombres rationnels ou non. Jai dit plus haut qu’il
n'était pas possible de concevoir plus de trois dimensions. Un homme
d'esprit de ma connaissance croit qu'on pourrait cependant regarder la
durée comme une quatriéme dimension, et que le produit temps par la
solidité serait en quelque maniére un produit de quatre dimensions; cette
idée peut étre contestée, mais elle a, ce me semble, quelque mérite, quand
ce ne serait que celui de la nouveauté.

Encyclopédie, Vol. 4 (1754), p. 1010
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Translated, this means:

This way of considering quantities having more than three dimensions is
just as right as the other, because algebraic letters can always be viewed as
representing numbers, whether rational or not. I said above that it was
not possible to conceive more than three dimensions. A clever gentleman
with whom I am acquainted believes that nevertheless, one could view
duration as a fourth dimension, and that the product time by solidity
would be somehow a product of four dimensions. This idea may be chal-

lenged, but it has, it seems to me, some merit, were it only that of being
new.

Observe how d’Alembert refers to a “clever gentleman” when he appar-
ently means himeself. He is being rather careful in proposing what must

have been at the time a far out idea, which became more prevalent in
the twentieth century.

D’Alembert also visualized clearly higher dimensional spaces as “prod-
ucts” of lower dimensional spaces. For instance, we can view 3-space as
putting side by side the first two coordinates (x,, x,) and then the third
x3. Thus we write

R3 =R? x R%.
We use the product sign, which should not be confused with other

“products”, like the product of numbers. The word “product” is used in
two contexts. Similarly, we can write

R* =R*® x R
There are other ways of expressing R* as a product, namely
R* =R? x R%
This means that we view separately the first two coordinates (x,, x,) and

the last two coordinates (x;, x,). We shall come back to such products
later.

We shall now define how to add points. If A, B are two points, say
in 3-space,
A = (a,, a,, ay) and B = (b, b,,bs)
then we define A + B to be the point whose coordinates are
A+B=(a‘ +b1, az+b2, a3+b3).

Example 2. In the plane, if 4 = (1,2) and B = (-3, 5), then

A+B=(-27).
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In 3-space, if A =(—1,n, 3) and B= (ﬁ, 7, —2), then

A+B=(/2-1,n+7 1.

Using a neutral n to cover both the cases of 2-space and 3-space, the
points would be written

A ={(ay,...,a,), B =(by,...,b,),
and we define 4 + B to be the point whose coordinates are
(a, + by,....a, + b,).

We observe that the following rules are satisfied:

1. (A+B)+C=A+ B+ ().
. A+ B=B+ A.
3. If we let

0 =(0,0,...,0)
be the point all of whose coordinates are 0, then
O+A=A4+0=A4

for all A. ,
4. Let A=(a,,...,a,) and let —A4 =(—a,,...,—a,). Then

A+ (—A4)=0.
All these properties are very simple, and are true because they are

true for numbers, and addition of n-tuples is defined in terms of addition
of their components, which are numbers.

Note. Do not confuse the number 0 and the n-tuple (0,...,0). We

usually denote this n-tuple by O, and also call it zero, because no diffi-
culty can occur in practice.

We shall now interpret addition and multiplication by numbers geo-

metrically in the plane (you can visualize simultaneously what happens
in 3-space).

Example 3. Let 4 =(2,3) and B=(—1,1). Then

A+ B=(1,4).
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The figure looks like a parallelogram (Fig. 3).

(1,4)

(2,3)

4
u

Figure 3
Example 4. Let 4 = (3,1) and B =(1,2). Then
A+ B=(423)

We see again that the geometric representation of our addition looks like
a parallelogram (Fig. 4).

Figure 4

The reason why the figure looks like a parallelogram can be given in
terms of plane geometry as follows. We obtain B = (1,2) by starting
from the origin O = (0, 0), and moving 1 unit to the right and 2 up. To
get A + B, we start from A4, and again move 1 unit to the right and 2
up. Thus the line segments between O and B, and between 4 and A + B
are the hypotenuses of right triangles whose corresponding legs are of
the same length, and parallel. The above segments are therefore parallel
and of the same length, as illustrated in Fig. 5.
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Example 5. If 4 = (3, 1) again, then —A4 = (—3, —1). If we plot this
point, we see that — A4 has opposite direction to 4. We may view —A4
as the reflection of 4 through the origin.

_3 -1+

Figure 6

We shall now consider multiplication of 4 by a number. If ¢ is any
number, we define c4 to be the point whose coordinates are

(cay,...cap).
Example 6. If A =(2, —1,5) and ¢ = 7, then cA = (14, —7, 35).
It is easy to verify the rules:

5. ¢(A+ B)=cA+cB.
6. If c,, ¢, are numbers, then

(¢, +c)A=cA+cA and (c,¢)A = cy(c; A).
Also note that
(-DA=-4
What is the geometric representation of multiplication by a number?
Example 7. Let A =(1,2) and ¢ = 3. Then

cA = (3,6)

as in Fig. 7(a).

Multiplication by 3 amounts to stretching 4 by 3. Similarly, 34
amounts to stretching A by 4, i.e. shrinking A4 to half its size. In general,
if t is a number, ¢t > 0, we interpret t4 as a point in the same direction
as A from the origin, but ¢t times the distance. In fact, we define 4 and
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B to have the same direction if there exists a number ¢ > 0 such that
A = cB. We emphasize that this means 4 and B have the same direction
with respect to the origin. For simplicity of language, we omit the words
“with respect to the origin”.

Mulitiplication by a negative number reverses the direction. Thus
—34 would be represented as in Fig. 7(b).

+ 34=(3,6)
I 34
T
T f4=012)
T/ =G
e -34
(a) (b)
Figure 7

We define 4, B (neither of which is zero) to have opposite directions if
there is a number ¢ < 0 such that c4A = B. Thus when B = — A4, then A,
B have opposite direction.

Exercises I, §1

Find A + B, A — B, 34, —2B in each of the following cases. Draw the points of
Exercises 1 and 2 on a sheet of graph paper.

1.A=(Q, —1), B=(-1,1) 2. A=(=1,3), B=(0,4)
3.A4=02 —1,5, B=(~1,1,1) 4. A=(—1,-2,3),B=(=1,3, —4)
5.A=(m3,—1), B=Qn —3,7) 6. A=(15 ~2,4), B=(n3, —1)

7. Let A=(1,2) and B=(3,1). Draw A+ B, A+ 2B, A+ 3B, A— B, A~ 2B,
A — 3B on a sheet of graph paper.

8. Let 4, B be as in Exercise 1. Draw the points 4 + 2B, A + 3B, A — 2B,
A ~ 3B, A + 4B on a sheet of graph paper.

9. Let 4 and B be as drawn in Fig. 8. Draw the point 4 — B.



