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PREFACE

This book was written to prepare the reader to analyze and design radio-
frequency (RF) circuits. Developed as a text for a one-semester electrical
engineering course at Cornell University, it can also be used for self-study
and as a reference for practicing engineers. The discussions of systems, for
example television and radio astronomy, complement the detailed analyses
of the basic circuit blocks. In the discussions of these basic circuits, I have
tried to convey an intuitive understanding from which mathematical ana-
lysis easily follows. The scope of topics is wide, and the level of analysis
ranges from introductory to advanced. This seems to suit today’s students
who, though unfamiliar with radio-frequency circuits, are well prepared in
engineering fundamentals and have good analytical skills. The only back-
ground assumed is basic engineering mathematics and physics, linear cir-
cuit analysis, and some elementary analog electronics. Many readers will
have had more digital than analog experience, so the digital aspects of
switching modulators and direct digital synthesizers are given only short
explanations. On the other hand, some basic analog circuit elements such
as transformers are now less commonly understood and are therefore
reviewed in detail.

For helpful comments and suggestions I am grateful to many students
and colleagues, especially Michael Davis, Paul Horowitz, Mario Terkic,
and Wesley Swartz.

Jon B. Hagen

Ithaca, NY
October 1996
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INTRODUCTION

Consider the magic of radio. Portable, even hand-held, short-wave trans-
mitters can reach thousands of miles beyond the horizon. Tiny microwave
transmitters aboard space probes return data from across the solar system.
And all at the speed of light. Yet before the late 1800s there was nothing to
suggest that telegraphy through empty space would be possible even with
mighty dynamos, much less with insignificantly small and inexpensive
apparatus. The Victorians could extrapolate from experience to imagine
flight aboard a steam-powered mechanical bird or space travel in a scaled-
up Chinese skyrocket. But what experience would even have hinted at
wireless communication? The key to radio came from theoretical physics.
Maxwell consolidated the known laws of electricity and magnetism and
added the famous displacement current term, dD/dt. By virtue of this
term, a changing electric field produces a magnetic field, just as Faraday
had discovered that a changing magnetic field produces an electric field.
Maxwell’s equations predicted that electromagnetic waves can break away
from the electric currents that generate them and propagate independently
through space with the electric and magnetic field components of the wave
constantly regenerating each other.

Maxwell’s equations predict the velocity of these waves to be 1/,/Z550
where the constants €, and p, can be determined by simple measurements
of the static forces between electric charges and between current-carrying
wires. The dramatic result is, of course, the experimentally known speed of
light, 3 x 108 m/s. The electromagnetic nature of light is revealed. Hertz
conducted a series of brilliant experiments in the 1880s in which he gen-
erated and detected electromagnetic waves with wavelengths very long
compared to light. The utilization of Hertzian waves (the radio waves
we now take for granted) to transmit information developed hand-in-
hand with the new science of electronics.

Where is radio today? AM radio, the pioneer broadcast service, still
exists along with FM, television, and two-way communication. Now
radio also includes radar, surveillance, navigation and broadcast satellites,
cellular telephones, remote control devices, and wireless data communica-
tions. Applications of radio frequency (RF) technology outside radio
includg microwave heaters, medical imaging systems, and cable television.
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spectrum.

Radio occupies about eight decades of the electromagnetic spectrum, as
shown in Figure 1-1.

RF CIRCUITS

The circuits discussed in this book generate, amplify, modulate, filter,
demodulate, detect, and measure ac voltages and currents at radio fre-
quencies. They are the blocks from which RF systems are designed.
They scale up and down in both power and frequency. A six-section
bandpass filter with a given passband shape, for example, might be large
and water cooled in one application but subminiature in another. Depend-
ing on the frequency, this filter might be made of sheet metal boxes and
pipes, of solenoidal coils and capacitors, or of piezoelectric mechanical
resonators, yet the underlying circuit design remains the same. A class-C
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amplifier circuit might be a small section of an integrated circuit for a
wireless data link or the largest part of a multimegawatt broadcast trans-
mitter. Again, the design principles are the same.

NARROW-BAND NATURE OF RF SIGNALS

Note that most of the RF allocations have small fractional bandwidths,
that is, the bandwidths are small compared to the center frequencies. The
fractional bandwidth of the signal from any given transmitter is less than
ten percent — usually much less. This means that the RF voltages through-
out a radio system are very nearly sinusoidal. An otherwise purely sinu-
soidal RF “carrier” voltage must be modulated (varied in some way) to
transmit information. Every type of modulation (audio, video, pulse, digi-
tal coding, etc.) works by varying the amplitude and/or the phase of the
carrier. An unmodulated carrier has only infinitesimal bandwidth; it is a
pure spectral line. Modulation always broadens the line into a spectral
band, but the energy clusters around the carrier frequency. Oscilloscope
traces of the RF voltages in a transmitter on a transmission line or antenna
are therefore nearly sinusoidal. When modulation is present, the amplitude
and/or phase of the sinusoid changes but only over many cycles. Because
of this narrow-band characteristic, elementary sine wave ac circuit analysis
serves for most RF work.

AC CIRCUIT ANALYSIS — A BRIEF REVIEW

The standard ac circuit theory that treats voltages and currents in linear
networks is based on the linearity of the circuit elements. When a sinusoi-
dal voltage or current generator drives a circuit, the resulting steady-state
voltages and currents will all be perfectly sinusoidal and will have the same
frequency as the generator. Normally we find the response of driven ac
circuits by a mathematical artifice. We replace the given sinusoidal gen-
erator by a hypothetical generator whose time dependence is e/’ rather
than cos(wf) or sin(wt). This source function has both a real and an
imaginary part since e/’ =cos(wt) +j sin(wr). Such a nonphysical
(because it is complex) source leads to a nonphysical (complex) solution.
But the real and imaginary parts of the solution are separately good phy-
sical solutions that correspond to the real and imaginary parts of the
complex source. The value of this seemingly indirect method of solution
is that the substitution of the complex source converts the set of linear
differential equations into a set of easily solved linear algebraic equations.
When the circuit has a simple topology, as is often the case, it can be
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reduced to a single loop by combining obvious series and parallel
branches. Several computer programs are available to find the currents
and voltages in complicated ac circuits. Most versions of SPICE will do
this steady-state ac analysis (which is much simpler than the transient
analysis which is their primary function). Special linear ac analysis pro-
grams for RF and microwave work such as COMPACT, TOUCH-
STONE, and MMICAD include circuit models for strip lines,
wayveguides, and other RF components. You can write a simple program
to analyze ladder networks (see Problem 3) that will analyze most filters
and matching networks.

IMPEDANCE AND ADMITTANCE

The coefficients in the algebraic circuit equations are functions of the
complex impedances (V/I), or admittances (I/V), of the RLC elements.
The voltage across an inductor is L dI/dt. If the current is Iye’’, then
the voltage is (jwL)lpe’!. The impedance and admittance of an inductor
are therefore respectively jwL and 1/(jwL). The current into a capacitor is
C dV/dt, so its impedance and admittance are 1/(jwC) and jwC. The
impedance and admittance of a resistor are just R and 1/R, respectively.
Elements in series have the same current, so their total impedance is the
sum of their separate impedances. Elements in parallel have the same
voltage, so their total admittance is the sum of their separate admittances.
The real and imaginary parts of impedance are called resistance and reac-
tance while the real and imaginary parts of admittance (the reciprocal of
impedance) are called conductance and susceptance.

SERIES RESONANCE

A capacitor and inductor in series have an impedance Z, = JwL + 1/jwC.
This can be written as Z, = j(L/w)(w? — 1 /LC), so the impedance is zero
when the (angular) frequency is 1/v/LC. At this resonant Jfrequency, the
series LC circuit is a perfect short circuit (Figure 1-2). Equal voltages are
developed across the inductor and capacitor but they have opposite signs,
and the net voltage drop is zero. At resonance and in the steady state there
is no transfer of energy in or out of this combination. (Since the overall
voltage is always zero, the power, IV is always zero.) However, the circuit
does contain stored energy, which simply sloshes back and forth between
the inductor and the capacitor. Note that this circuit, by itself, is a simple
bandpass filter.




