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ALPHABETICAL ARRANGEMENT OF ENTRIES

The entries in the Merit Students Encyclopedia are arranged in a simple alphabetical order. The method of

arrangement combines elements of the system used in most dictionaries with that used in telephone directories.

Each entry begins with a heading in dark type. Some of these headings contain a comma; others do not. The basic
principles of arrangement are listed below, including rules for placement of identical headings.

The alphabetical sequence is letter by letter.
air
air conditioning
aircraft
aircraft carrier
aircraft landing system
airedale terrier
airfoil

When headings contain words out of their usual order,
a comma is used to indicate the change of order, as in

Alaska, University of

Alba, Duke of
Alger, Horatio

Such entry headings are arranged in alphabetical se-
quence only up to the comma.

Bryansk

Bryant, William Cullen

Bryant College

When words preceding a comma are the same in two
or more consecutive entries, the order is determined by
the arrangement of the letters following the comma.

Brooks, Phillips
Brooks, Van Wyck

When two or more entries have the same heading,
the entries are placed in the following order: persons,
places, things.

Hannibal Hercules Phoenix
(person) (person) (place)

Hannibal Hercules phoenix
(place) ( constellation ) (bird)

Rulers with identical names are listed alphabetically
by the name of the territory ruled. Rulers with the same
name and same realm are listed according to dates of
reign.

Frederick IX (of Denmark)
Frederick | (of Holy Roman Empire)
Frederick Il (of Holy Roman Empire)

Frederick Il (of Prussia)

Popes are listed by dates of reign, and they precede
rulers of the same name.
Paul VI (Pope)
Paul | (Emperor of Russia)

Other persons with identical names are listed accord-
ing to date of birth.
Butler, Samuel (born 1612)
Butler, Samuel (born 1835)

Places with identical names are listed according to
the importance of the political unit,in descending order.
New Brunswick (Canadian province)

New Brunswick (U.S. city)

When places of the same political unit have identical
names, they are arranged alphabetically by location.
Cities in the United States and Canada are always lo-
cated in reference to states or provinces. Cities else-
where are usually located in reference to countries.

Abilene (Xansas) Abydos (Egypt)
Abilene (Texas) Abydos (Turkey)

Things with identical names are arranged alpha-
betically according to the subject in which they are
classified.

aberration, in astronomy
aberration, in optics



GUIDE TO PRONUNCIATION

Pronunciations in Merit Students Encyclopedia appear in parentheses following entry
headings. Heavy and light stress marks are used after syllables to indicate primary and
secondary accents. A heavy stress mark is used in words that contain one primary
accent, such as comet (kom’it). Both heavy and light stress marks are used in words
that have secondary as well as primary accents, as in communication (ko mi’ ns ka’
shon). When two or more entries have exactly the same pronunciation, as with Paris
the mythological hero and Paris the French city, the pronunciation is given only with
the entry that appears first. Where possible, letters of the standard alphabet are used as
symbols in the pronunciation system in preference to less familiar symbols. The symbols
used are shown below with some words in which their sounds appear.

a hat, cap j jam, enjoy u cup, butter
a age, face k  kind, seek u full, put
4 care, air 1 land, coal i rule, move
a father, far m me, am U use, music
n no,in
b  bad, rob ng long, bring
U G o ot ok M e
0 open, go ’
e let, best 6- oFder, .all 5; Zeo:]ongl;rz:;e
e eql)lal see o ail‘wice zh mea;ure seizure
> ’ ou house, out %
er term, learn
) P paper, cup
f fat, if I runm, try 9 represents:
g go, bag s say, ves a in about
h  he, how sh  she, rush e in taken
t tell, it i in April
i it, pin th thin, both o in lemon
i ice, five FH then, smooth u in circus

In pronunciations for entries describing foreign persons and places it is sometimes
necessary to represent sounds that are not used in English. Such foreign sounds are
represented by four special symbols, which are listed below. Each symbol is accom-
panied by a brief indication of how the sound it represents is produced.

Y as in French du. Pronounce € with N as in French bon. The N is not pro-
the lips rounded as for English i nounced but shows that the vowel
in rule. before it is nasal.

@ as in French peu. Pronounce a with H as in German ach. Pronounce k

the lips rounded as for 0. without closing the breath passage.



caisson (ka’san), a large, strong, boxlike or cylindrical
structure used for laying foundations underwater. Cais-
sons are made of steel, concrete, or wood. They act as
molds for concrete foundations or as protective shells
within which workers can excavate and lay founda-
tions. The term “caisson” is sometimes also applied to
open-ended tubes used for laying foundations on land.
The tubes are sunk into the ground, and the soil with-
in them is removed, creating deep pits. The pits are
then filled with concrete to form foundations.

For such underwater structures as bridge piers, the
foundations of seawalls, breakwaters, wharves, jetties,
and other similar structures, three types of caissons are
used: the box, the open, and the pneumatic caisson.

Box Caisson. A box caisson, sometimes called a
floating caisson, is a large watertight box, open at the
top. It is usually floated to the construction site where
it is sunk by being partly loaded with concrete. Once
the caisson has sunk into position, it is filled with
concrete to form a pier or foundation. The caisson
remains as the outer shell of the structure. The box
caisson is used only on solid bottoms that have been
prepared to receive it and give it firm footing.

Open Caisson. Open caissons are used in soft muddy
or sandy water beds. They are sunk through the mud
or sand to the underlying rock. An open caisson is a

box that is open at the top and bottom and is braced
inside with many intersecting walls. The intersecting
walls have vertical open spaces, called dredging wells,
between them. Another kind of open caisson usually
consists of a solid block of reinforced concrete pieroed
by many vertical tunnels, also called dredging wells.
The sharp bottom rim of the caisson is designed to
cut into the water bed and is often faced with struc-
tural steel. As the caisson sinks into the water bed, the
mud and sand gouged loose by the bottom rim are
pumped out through the dredging wells or are lifted
out by hoisting devices. When the caisson has sunk to
the solid rock, the exposed surface of the rock is
cleaned and concrete is deposited on it, forming a
sealed bottom for the caisson. Water is then pumped
out of the wells, and they are filled with concrete.
Pneumatic Caisson. When the caisson must be sunk
through hard, rocky material, a pneumatic caisson is
used. It consists of a frame or shell with an airtight
roof, or bulkhead, about 7 feet above the bottom cut-
ting rim. A box caisson can sometimes be converted
into a pneumatic caisson by the addition of a bulk-
head. Air is pumped under pressure into the space
under the bulkhead, forcing out the water and creat-
ing a chamber for workers. The workers enter this
pressurized chamber through a tube, and the rock and

The top sections of pier caissons are precast before being sunk to form foundations.

Yo
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EWING GALLOWAY
Steel caissons are filled with concrete to form part of the
foundations of buildings or of underwater structures.

soil they dig up is removed through another tube. Both
tubes are equipped with air locks so that men and
materials can enter and leave the chamber.

An air lock has two airtight doors. The outer door,
which opens to the outside air, is hinged to swing into
the air lock and cannot be opened when the air lock
is pressurized. The inner door, which leads to the
pressurized working chamber, swings into the chamber
and can be opened only when the air pressure in the
air lock has been raised to equal the air pressure in
the chamber.

Entering the working chamber is done in several
stages. First the workers go into the air lock and shut
the outer door behind them. Then air is pumped into
the air lock. Finally, when the air pressure in the air
lock equals the air pressure in the working chamber,
the workers open the inner door and enter the work-
ing chamber. To leave the chamber, the workers enter
the air lock and shut the door behind them. The pres-
sure is then reduced, and when it is equal to the out-
side air pressure, the outer door can be opened, permit-
ting the men to leave the caisson.

The pressure in the air lock must be lowered slowly
to prevent workers from suffering attacks of caisson
disease, also called the bends. The disease is a painful
and sometimes fatal condition in which nitrogen bub-
bles form in the blood and body tissues.

William K. Fallon

caisson disease. See BENDS.

Caithness-shire (kath’nes shar), a former county in
northeastern Scotland, separated from the Orkney Is-
lands by the Pentland Firth, with the North Sea on its
east coast and the Atlantic Ocean to its north. John
O’Groats, in Caithness-shire, is often said to be the
northernmost point on the British mainland, but Dun-
nett Head on a nearby promontory extends further
north. Caithness-shire, or Caithness, is mountainous in
the south and west, and slopes to a low, treeless plain

in the north. Its coastline on the Atlantic Ocean is
rocky, but on the North Sea it is sandy. The area is
drained by the rivers Thurso and Wick.

Sheep, oats, and turnips are raised in Caithness, and
stone is quarried there. Fishing is carried on along the
coast. Thurso and Wick, the former county town, are
the largest communities. In 1975, when the Scottish
local government was reorganized, Caithness became
part of the region of Highland.

Cajuns. See under AcADIA.

Calabria (ko 1la’bris), a region in southern Italy; bor-
dering the Ionian and Tyrrhenian seas and the Strait
of Messina. Area about 5,821 square miles (15,076 sq
km). Pop. (1974 est.) 2,023,000.

Calabria is made up of the three provinces of Ca-
tanzaro, Cosenza, and Reggio di Calabria and forms
the southernmost part of the Italian mainland. It is a
rugged mountainous area where the Apennines rise
to elevations of more than 7,300 feet (2,200 meters).

Farming is the principal economic activity in Cala-
bria. Reggio di Calabria is the largest city and the
regional capital. Calabria became part of the kingdom
of Naples in the late 13th century. In 1861 it was
incorporated into Italy. *Norman J. G. Pounds

A. B. MORSE
The caladium is a small tropical American plant.

caladium (ko 13’di am), any of a group of small tropical
American plants with beautiful foliage. Caladiums
may grow 24 inches (61 cm) tall and have heart-
shaped or spade-shaped leaves about 8 inches (20 cm)
long. The leaves are various shades of green and have
red, pink, violet, or yellow patterns. Tiny greenish blos-
soms grow on spikes, which are enclosed by leaflike
spathes. Many caladiums are cultivated in pots and
window boxes, and in mild North American climates
two species (Caladium bicolor and C. picturatum) are
frequently cultivated as garden plants.
Caladiums are classified as genus Caladium of the
family Araceae (arum). Perennial. *Reed C. Rollins

Calais (kala’; British, kal’a or kal’is), a city in north-
ern France; in the region of Artois; on the Strait of
Dover. Pop. (1975) 78,820.

Calais is a seaport and a terminus for ferryboats
that operate across the strait to Dover and Folkestone
in England. Calais is closer to England than any
other city on the European continent and is only
26 miles (42 km) from Dover. The chief exports of



Calais include woven goods, glassware, and metalware.
Petroleum, timber, and raw wool are imported. Fishing
is a major occupation of the inhabitants of the city.
Fishing boats, telephone cables, chemicals, and tex-
tiles, notably lace and tulle, are made there.

Originally a small fishing village, Calais was forti-
fied by the counts of Boulogne in the 13th century
because of its strategic location as the nearest point
in France to England. The English captured Calais
in 1347 and held the city until 1558, when it was
retaken by the French. The harbor facilities and much
of the city were severely damaged in World War II.

*Norman J. G. Pounds

calamine. See HEMIMORPHITE.

Calamity Jane (kolam’sti), American frontiers-
woman. Born Martha Jane Canary, at Princeton, Mo.,
about 1852. Died Deadwood, S.D., Aug. 1, 1903.

Calamity Jane has become a legend in the history
of the American frontier. Regarding herself as the
equal of any man, she refused to live under the 19th-
century code of acceptable feminine behavior. She
dressed in men’s clothing and became an excellent shot
and horsewoman. Many events in Calamity Jane’s life
are either unknown or fictionalized. Her nickname is
believed to have originated from her threats that ca-
lamity would befall any man who offended her.

Reared in frontier mining towns in Utah, Wyoming,
and Montana, Calamity Jane went to the Dakota terri-
tory in 1876, during the Black Hills gold rush. She may
have been a mail carrier for the U.S. Post Office while
living in Deadwood. According to her own account,
she was also a pony express rider and a scout for
generals George Custer and Nelson Miles.

Calamity Jane considered herself the equal of any man.

STATE HISTORICAL SOCIETY OF COLORADO

calcium chloride 3

Toward the end of her life, Calamity Jane lived in
poverty. To earn money, she toured the West with a
performing troupe and sold her autobiography and
self-portraits. Calamity Jane is buried in Deadwood,
next to the grave of Wild Bill Hickok.

*Robert V. Remini

calamus. See swWEET FLAG.

calcite (kal’sit), a calcium mineral. Formula CaCOs.
Glassy to earthy luster. White or colorless, sometimes
tinted gray, green, red, blue, or yellow. Transparent to
translucent. Hardness 3. Specific gravity 2.72.

Calcite, a form of calcium carbonate, is one of the
most common minerals. It is the chief constituent of
limestone, marble, and chalk. Calcite is often deposited
by spring water as travertine and Mexican onyx, and
forms the stalagmites and stalactites found in caves.
Iceland spar is a pure form of calcite.

Calcite, in the form of limestone, is used to make
cement, quicklime, and mortar. Marble and some lime-
stones are used as building materials. In the form of
chalk, calcite is used in the manufacture of blackboard
crayons, putty, and rubber goods.

*Cornelius S. Hurlbut, Jr.

calcium (kal’si am), a chemical element. Symbol Ca.
First prepared in pure form in 1808 by Sir Humphry
Davy (British). Melting point 842-848° C. (1550—
1560° F.). Boiling point 1487° C. (2709° F.). Oxida-
tion number 2. Atomic weight 40.08. Atomic number
20.

Calcium is a malleable, ductile, silvery-white metal.
Although it never occurs uncombined in nature, it is
the fifth most abundant element and the third most
abundant metal, accounting for 3.6 percent of the
earth’s crust. It is obtained by passing an electric
current through molten calcium chloride.

Calcium is essential for the growth of bones and
teeth, as well as for plant growth. It is used in bear-
ing-metal alloys, for making steel, and for refining
chromium, uranium, and other metals. Because it
absorbs gases, it is used to remove the last trace of
gas from vacuum tubes.

Calcium compounds are numerous, relatively inex-
pensive, and commercially important. Calcium car-
bonate, CaCOj3, the most abundant calcium compound,
is found in limestone, marble, gypsum, Iceland spar,
and other minerals. It is used to make portland cement
and various kinds of plaster and mortar.

Other calcium compounds are used in drying agents,
paint pigments, disinfectants, photographic chemicals,
textile dying and printing solutions, baking powders,
bleaches, and other products. *Alfred B. Garrett

calcium chloride (kl16”rid), a chemical compound of
calcium and chlorine. Formula CaCls. It is a colorless,
crystalline solid at room temperature, and it is highly
soluble in water. In addition to the anhydrous form,
calcium chloride also exists in several hydrous forms:
CaClz-H30, CaCly-2H20, and CaCls-6H,0.

Calcium chloride is deliquescent, which means that
it absorbs water from the air to such an extent that it
dissolves in the water it collects. Because of this prop-
erty, calcium chloride is sprinkled on unpaved roads
and in mines, where the water it absorbs helps to keep
down dust. It is also used as a drying agent in chemi-
cal analysis and as an antifreeze, *Alfred B. Garrett



4 calculus

calculus (kal’kiilss), a branch of mathematics that
deals with continuously changing quantities, such
as the position of a point as it traces out a mathe-
matical curve. The calculus can be applied to innu-
merable areas of physics and engineering. Its develop-
ment in the 17th century allowed the solution of many
problems that had been insoluble by the methods of
arithmetic, algebra, and geometry. Among these prob-
lems were the determination of the laws of motion
and the theory of electromagnetism.

The calculus consists of two main branches: differ-
ential calculus and integral calculus. Differential cal-
culus deals with the rates at which quantities change.
Integral calculus develops methods for finding the
areas enclosed by curved boundaries, a problem that
has a wide variety of applications in other branches
of science.

In both the main divisions of calculus, two concepts
are fundamental: function and limit. Functions and
limits must be thoroughly understood before the cal-
culus can be attempted.

Functions

A function is an association between the elements
of two sets of numbers. For example, for every value
of x in the equation y = 2x, there is a corresponding
value of y. That is, if x =1, y=2. If x=2, y=4.
If x = 2#r, then y = 4xr. All the possible values that
x may take on are members of a set called the do-
main. All the possible values that y may take on are
members of a set called the range. Since y always
equals twice as much as x, every element in the range
has twice the value of its corresponding element in
the domain. There is thus a definite association be-
tween the elements of these two sets, and that associ-
ation is called a function. In mathematical terminol-
ogy, this is written

y=f(x),

which is read: “y equals f of x.”

The expression f(x) is a general expression, show-
ing that y is a function of x but not saying exactly
what that function is. For example, y may equal
2x, x% 4 5x — 3, or any other algebraic expression
containing x.

Since x and y may take on the value of any element
in their sets, they are called variables. In general, a
variable assumes a number of values in a given prob-
lem. For example, if a car travels 50 miles an hour,
the distance it travels changes constantly. Distance
is thus a variable. The time of travel also changes,
and thus time is another variable. Since the distance
covered depends on the time of travel, distance is
called the dependent variable and time the indepen-
dent variable. Distance is thus a function of time.

Many other relationships in nature and in mathe-
matics may be expressed by functions and variables.
A boy grows larger with the years. Both his height
and his weight may therefore be expressed as func-
tions of time. A coal mine becomes hotter as one
descends. Its temperature may therefore be expressed
as a function of depth. A mathematical curve may
take on new values of y as x changes. Thus y is a
function of «x.

All of the functions mentioned may be represented
visually on a graph. Fig. 1 shows a graph of the
function y = x2. It is customary to graph the domain

Fig. 1. Graphs of functions are often able to illustrate properties
of the function that are not immediately evident from the equa-
tion alone. For example, a graph of the parabola y = f(x) = x2
shows at once that y can never take on a negative value.

of the function (the values taken on by x) along a
horizontal axis, while the range is graphed along a
vertical axis. The domain and the range are marked
in the figure. Note that the domain consists of the
set of all real numbers, but that the range is the set
of all nonnegative real numbers.

Within the area covered by this graph, every point
whose x and y values satisfy this function (y = x2)
lies on the curve. Also, every point on the curve has
x and y coordinates that satisfy the function. The
curve is thus an accurate “picture” of the function,
showing some of its properties at a glance.

Limits
The idea of a limit is the second fundamental con-

cept of the calculus. An example of a limit is the sum
of the following series:

y T . |
gtgtgT

No restriction is placed on the number of terms in
the series. Any number of terms may be added so
long as each term is one-half the preceding term. Yet
the sum of this unending series has a limit, as indi-
cated by the following table:

Sum of terms

0.5

0.75

0.875

0.9375
0.96875
0.984375
0.9921875
0.99609375
0.998046875
0.9990234375

Number of terms

COEIOUT R WN M
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The sum seems to be approaching the number 1 as a
limit. That the limit is indeed exactly 1 may be seen
by considering the sequence of terms obtained by
starting out with a pie and repeatedly giving away



LIMIT OF A SERIES
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Fig. 2. If a boy eats half a pie (the unshaded area in first circle), then eats half of the other half, and so on, he can never finish it.
The most he can eat is the mathematical limit of the series 5+, +%+...+ 1 _, where n is the number of times the boy cuts the pie.

half of what is left. (See Fig. 2.) Half of the pie is
%; half of the remaining half is %; half of the re-
maining quarter is %; and, in general, the successive

terms of this sequence are identical with the terms
of the first series. Thus the two series are the same.
In the case of tHe sequence generated by cutting up
the pie, it is obvious that the sum of the amounts
given away cannot exceed 1, since there were no extra
pies or fractions of a pie to start with. Therefore, the
sum of the first series cannot exceed 1.

It can also be shown that the sum never actually
reaches the value of 1. No matter how small a piece
of the pie is left, giving away half of it will still
leave a tiny segment that is not included in the sum.
However, the sum can be made to approach the limit
of 1 as closely as is desired, simply by taking a suffi-
ciently large number of terms.

Limit of a Function. In the above series there is a defi-
nite relationship between the number of terms to
be added and the sum of these terms. If the number
of terms is 2, then their sum is 0.75; if the number
of terms is 5, then their sum is 0.96875. Thus for
any selected number of terms, there is associated ex-
actly one number corresponding to their sum. This
relationship satisfies the definition of function. The
sum of the terms in the series is therefore a function
of the number of terms. Thus, if S represents the sum

LIMIT Oif?(A) FUNCTION AS « APPROACHES INFINITY
@
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Fig. 3. The graph helps in showing that the limit of the function
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f(x) = ,l(- as x increases without bound, is zero.

2n

and 7n is the number of terms, the function may be
written

S = f(n).

As we have seen, if n, the number of terms, is in-
creased without bound, the sum S approaches a lim-
iting value of 1. This may be expressed mathemati-
cally as follows:

lim f(n) =1,
n— o

which is read “The limit of f of n as m» approaches
infinity is 1.” The symbol « is used to indicate the
absence of any upper bound on the value of n. This
absence of a bound is indicated by the name “infinity.”

In the series above, the sum S may take on a num-
ber of values depending on the value of n. S may
thus be regarded as the dependent variable and n as
the independent variable. The limit of the function
S = f(n) is therefore the value that the function ap-
proaches as m, the independent variable, approaches
infinity.

In one respect, this function is unlike the majority
of functions treated by the calculus: it “jumps”
from one value to the next. Such a function is called
discontinuous, and its graph, in this case, consists of
a set of unconnected points. The calculus usually
treats comtinuous functions, whose graphs are un-
broken curves. However, for both types of functions,
the concept of the limit is essentially the same.

For example, consider the limit of the continuous

function f(x) = vl_c, as x approaches infinity. (The do-

main of this function is the positive real numbers.)
As x increases, the value of the function decreases
continuously. (See Fig. 3.) In fact, no matter how
small a positive number is chosen, the value of the
function can be made still smaller, simply by choosing
x large enough. Thus the limit of this function is zero:
im 1_ 0
xX—> 0 x
In both of the examples above, the independent
variables were allowed to increase without bound, or
to approach infinity. However, in other problems the
independent variable may approach some value other
than infinity, such as zero or some constant value. In
general, then, the limit of any function £f(x) is the
value that the function approaches as x approaches
some selected value a. This may be expressed mathe-
matically as follows:
lim f(x) =L,
x—>a
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which is read “The limit of f of x, as x approaches a,
is L.” An example of a function that has a limit when
x approaches a constant value is the following:

x2 — 1
x—1

f(x) =

This function is not defined when x = 1, because its
denominator is zero at that point, and division by zero
has no meaning. However, the function may be fac-
tored into the following expression; (Xt 1)(x—1) : ";'— 1
Now as long as x is not equal to 1, the expression
(x — 1) is not equal to zero. Moreover, since any non-
zero number divided by itself equals 1, the function
equals x + 1 for all values of x not equal to 1.

As x comes closer and closer to 1, the function
comes closer and closer to a value of 2. In fact, the
function can be made to come arbitrarily close to the
value of 2, simply by choosing a value of x equally
close to 1. This answers the definition of the limit:

lim x2—1_2
x—>1 x—1_

Fig. 4 illustrates this function, with an empty circle at
the point where the function is undefined. The dis-
tance of the circle, measured from the x-axis, is equal
to the limit of the function.

Differential Calculus

Rate of Change. The differential calculus is largely
concerned with finding the rate of change of functions.
Rates of change are important in many problems of
physics and mathematics. The velocity of a moving
object, for example, is the rate of change of the ob-
ject’s distance with respect to time. If the function re-
lating distance to time is known, it is usually a sim-
ple matter to determine the velocity at any time by
means of differential calculus. However, velocity is
not the only kind of rate of change. Acceleration, for
example, is the rate of change of velocity with respect

Fig. 4. The function is not defined at the point x = 1 because
its equation would reduce to % The empty circle indicates that
the function has no value at that point. However, the graph helps
to show that the limit of the function, as x approaches 1, is 2.

to time, and mathematicians and physicists find it
necessary to study countless other rates of change.
One of the most interesting rates of change is the
slope, or steepness, of a curve, which makes it possible
to visualize the rate of change of any continuous
function.

Average Slope of a Curve. In Fig. 5a, as the boy trav-
els from the first tree (T,) to the next (T,), there is a
large change in his vertical distance from the base of
the hill, but only a small change in his horizontal dis-
tance. Between these points the hill is steep and is said
to have a large average slope. In other words, there is
a high rate of change of vertical distance with respect
to horizontal distance.

As the boy travels along the nearly level portion be-
tween the third and fourth trees (T, and T,), however,
he goes a long distance forward but only a short dis-
tance upward. Thus, there is a low rate of change in
vertical distance with respect to horizontal distance,
and the average slope of the hill between these points
is said to be small.

In a similar way the slope of a mathematical curve
may be imagined as a measure of the steepness of the
curve. However, the mathematical definition of slope
is more precise than the everyday usage of the term.
The average slope between any two points T, and T, is
defined as the ratio of the change in y (the vertica’

Fig. 5a. As the boy travels from the first tree to the second, he
gains altitude rapidly. The hill is said to have a large slope
between these points. But near the top the boy's altitude changes
slowly, because the slope is small. Thus, there is a relation
between slope and the rate of change of altitude.

Fig. 5b. In mathematics, the average slope of a curve is defined
more accurately as the change in y divided by the change in x,

or % When the average slope is large, as between points T: and

Te, the ratio % is also large. When the average slope is small,

as between points T; and T,, the ratio 2’7 is also small.
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distance between the two points) to the change in x
(the horizontal distance between them). In Fig 5b
these distances are symbolized as Ay and Ax, respec-
tively. The symbol A is the Greek letter delta and
stands for “the change in.” The change in y may be
found by subtracting the old value from the new one,
and a similar process determines the change in x.
Thus in mathematical terms the average slope be-

tween T, and T, is 2_%. This mathematical definition
of slope corresponds closely to the physical meaning of
the term. That is, the ratio % is large between points
T, and T,, corresponding to the steep part of the graph,
while the ratio % is small between points T, and T,

corresponding to the nearly level part of the graph.

Exact Slope of a Curve. In the sections above, the
average slope of a curve between two points was found.
This procedure, however, tells little about the actual
behavior of the curve, which could have taken any
conceivable path between the two points. The follow-
ing discussion shows how to determine the exact slope
of a curve at any point, by using the concept of the
limit.

The curve in Fig. 6 is the graph of a function
y = f(x), and the problem is to find the slope of the
curve at the point P. If only one point is considered,
the procedure discussed above for finding average
slope is impossible to carry out: there is no Ay or Ax,
because there is no second point from which to deter-
mine these distances. However, suppose a second point
Q is moved closer and closer to the fixed point P. The
line PQ cuts the curve in two points. But as the dis-
tance between the two points approaches zero, the line
connecting them approaches a limiting position in
which it touches the curve only at the point P. Such a
line is called a tangent. In other words, the tangent to
the curve at P is the limit approached by the line PQ
as the point Q approaches the point P.

It has already been shown that the average slope of
the curve between points P and Q is i_ayc But as Q
moves closer and closer to P, Ax becomes smaller and
smaller. In the limit as Q approaches P, Ax approaches

zero, and the ratio "2_1 approaches the exact slope of

Fig. 6. As the point Q moves along the curve and approaches the
fixed point P, the line connecting P and Q tends toward a limit-
ing position that is the tangent to the curve at point P.

/ THE TANGENT TO A CURVE
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the curve at the point P. In other words, the exact
slope of the curve at the point P is
lim Ay
Ax —> 0 Ax
This expression is also the slope of the tangent at P.

At the point P, the value of y is f(x), while at the
point Q, the value of y is f(x 4 Ax). (See Fig. 7.)

THE DERIVATIVE OF A FUNCTION

v

f(z+Ax)l
f(x)

Ay = f(z + Ax) — f(=)

By

@

z-{lAz

Fig. 7. The slope of the line PQ is defined as ;ﬂ. When the
%

limit of this expression is taken as Q moves toward P (as Ax
approaches zero), this limit is the slope of the tangent at P,
and it is called the derivative of the function at the point P.

Therefore Ay is equal to f(x + Ax) — f(x), and the
ratio 2Y may be written
Ax
Ay _ f(x + ax) — f(x)
Ax Ax

It has already been stated that the limit of this ratio
as Ax approaches zero is the exact slope of the curve
at any point P. Thus,

slope of curve = lim Ay
Ax = 0 Ax

= lim f(x+4 Ax) — f(x)

Ax—> 0 Ax ’

Derivative. The preceding expression for the slope of
a curve is called the derivative of the function graphed
by the curve. It is the basic concept of differential cal-
culus and one of the most useful mathematical tools.
The derivative gives the rate of change of the function
f(x) with respect to the independent variable x. If the
original function is represented by f(x), the deriva-
tive is often represented by f’(x). Thus,

Lm  f(x+ Ax) — f(x)
Ax—> 0 Ax

f(x) =

If the derivative of a function is positive at a par-
ticular point, the curve will slope upward to the right,
while if the derivative is negative, the curve will slope
downward to the right. If the derivative is zero, the
curve will have a horizontal direction. (See Fig. 8.)

The derivative of a function is itself a function:
For every value of x there is just one value of the deriv-
ative. When the graph of f(x) is drawn as in Fig. 8,
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Fig. 8. In part A, tangents to the curve have been drawn at three
points. The slope of the rising tangent is positive, that of the
level tangent is zero, and that of the falling tangent is negative.
Thus, a graph of the derivative (part B) includes a positive value
at x1, a value of zero at x;, and a negative value at xs, as shown.
The derivative of a function is thus itself a function.

f(x) = height of curve above point x on the x-axis
f’(x) = slope of curve above point x.

Finding a Derivative. The operation of finding a de-
rivative is called differentiation. The operation receives
its name from the fact that the derivative f’(x) is the
limit of the difference f(x,) — f(x,) divided by the
difference x, — x,.

Example. The problem is to find the derivative of
the function

f(x) =x2 4+ x
at a given point, say x = k. The value of this function
atx =k is

f(k) = k24 k.

The value of the function at a nearby point, for ex-
ample (k + h), is

f(k+h) =(k+h)*+ (k+h)
=k2+2hk + h2 +k +h.

Subtracting one value from another gives

f(k+h) —f(k) = (k*+2hk+h? + k+h) — (k*+ k)
= 2hk+h2+h.

Dividing by h results in the following:

Mhbﬂ=2k+l+h.

Letting h approach zero gives
f/(k) =lim (2k+1+h) =2k + 1.
h—>0

The symbol f/(k) stands for the derivative of f(k) and
is read “f prime of k.” Thus the derivatives of x? 4 x, at
the point x = k, is 2k + 1. Since k could be any value
of x, the derivative of x2 4 x, for any value of x, is
2x + 1.

Second Derivatives. In many cases it is necessary to
find the rate of change of a rate of change. For ex-
ample, the acceleration of an object is the rate of
change, or derivative, of its velocity. But the velocity
is the rate of change of the distance the body has cov-
ered, and thus the body’s acceleration is the deriva-
tive of a derivative. Such a derivative is called a sec-
ond derivative and is written f”(x), which is read
“f double prime of x.” For example, if

f(x) =2 4+ x,
it has just been shown that the derivative is
f(x) =2x+4 1.

By taking the derivative of this expression and using
the same method as before, the second derivative is
found:

l(x) =2.

Notation. Derivatives may be written in several dif-
ferent ways. The derivative of the function y = f(x)
may be written y* (read: “y prime”) or, as above,
f’(x). Some other ways of writing the derivative of
this function are

dy
> Df(x), Dy.

The symbol g-ii is not a quotient, but a single symbol,

although the differentials dx and dy may occur singly.

Ways of writing the second derivative in these three
systems follow:

24, D¥(x), Diy.

Rules for Finding Derivatives. Mathematicians have
developed rules that enable them to differentiate many
functions at a glance. Some of the principal rules are
given in the following paragraphs.

Constant. If f(x) = C, where C is a constant, then
the derivative of f(x) is 0. This becomes obvious when
the graph of f(x) is drawn, since the graph must be a
horizontal line, which has zero slope.

Powers of the Variable. If a function of x consists
of x raised to some power 7, then its derivative is equal
to » multiplied by x raised to a power smaller by one.
That is, if f(x) = xn, then f’(x) = nxn—1. For example,
the derivative of x? is 3x2; the derivative of x* is 4x3.
Since x = x1, the derivative of x is equal to x1—1, or
2=,

Constant Coefficients. If C stands for a constant,
then the derivative of Cf(x) is Cf’(x). Since the de-
rivative of x3 is 3x2, for example, the derivative of
5x3 is 5-3x2, or 15x2. Similarly, the derivative of 2x5
is 10x*.

Fractional Exponents. Both of the rules stated above
hold for fractional exponents. That is, the derivative



of xiis ‘—;x'i. and the derivative of x is %x—%.
Trigonometric Functions. The derivatives of three

important trigonometric functions are listed below:

Function Derivative
sin x cos X
cos X —sin x
tan x sec? x, or
cos? x

Sums of Functions. The derivative of the sum of
two functions is equal to the sum of the derivatives of
each function. That is, if the two functions are f(x)
and g(x), their sum is f(x) + g(x), and the deriva-
tive of their sum is f/(x) 4 g’(x). For example, if
f(x) = x3 and g(x) = x*, then the derivative of their
sum is 3x2 4 4x3.

Differences of Functions. The derivative of the dif-
ference of two functions is equal to the difference of
the derivatives of the two functions. Thus, the deriva-
tive of f(x) — g(x) is simply f’(x) — g’(x). For ex-
ample, the derivative of x3 — sin x is 3x2 — cos x.

Products of Functions.- If h(x) =f(x) -g(x),
then the derivative h’/(x) = f(x)-g’(x) + f'(x)-g(x).
For example,
if h(x) = x3-sin x, then h/(x) = x3-cos x + 3x2-sin x.

i i = f(x) th
Quotients of Functions. If h(x) ok en
R(x) = 9Cx) F(x) — £(x) g’ (x)

[g(x)]1?
For example, if h(x) = si:zx, then
R(x) = x2-cos X — sin x-2x
= = .

Maxima and Minima. If a function has a greater val-
ue at a certain point than at any neighboring point, it
is said to have a maximum at that point. Similarly, if
it has a smaller value at a certain point than at any
neighboring point, it is said to have a minimum at that
point. In Figure 9 the function f(x) = x% — 3x is
graphed. This function has a maximum at the point
marked A and a minimum at the point marked B.

It has been shown above that a function is increas-
ing at any point where its first derivative is positive
and decreasing where its first derivative is negative.
A point at which the first derivative is equal to zero is
called a critical point. If the second derivative at this
point is negative, then the point marks the position of
a maximum. If the second derivative is positive, the
point marks a minimum. If the second derivative is
equal to zero, then this critical point may mark a point
of inflection, where the curve is neither a maximum
nor a minimum. Point F in Fig. 9, for example, is a
point of inflection. Here the curve changes from con-
vex in one direction to convex in the other.

Thus the first and second derivatives of a func-
tion may be used to discover where the function
reaches its maximum and minimum values. For ex-
ample, if the function is x3 — 3x, then its derivative is
f’(x) = 3x2 — 3. Since the first derivative is zero at
critical points, this expression is set equal to zero and
solved for x:

3x2 —3=0;
3

2 — 2 .

x ._.3,01'1,

x=*VI=+41or—1.
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Now these values of x are substituted in the expression
obtained for the second derivative:

f’(x) = 6x;
f(+1) =6;
f’(—1) = —6.

Since the second derivative is positive at the point
x = +1, the curve is a minimum at that point. Simi-
larly, since the second derivative is negative at x = —1,
the curve reaches a maximum at that point. Tangents
drawn to the curve at these points are horizontal.

Solving Problems With the Differential Calculus

The methods for finding derivatives and maxima
and minima can be used to solve many different types
of problems. Some examples are given below.

Example 1. When a ball falls freely, the distance it
travels is given by the formula s = 16¢2, where ¢ is the
time of travel in seconds and s is the distance in feet.
As stated above, the derivative of any function is its
rate of change with respect to the independent vari-
able. Therefore, the derivative of this function is the
rate of change of distance with respect to time. But
this is the definition of velocity, and thus the very im-
portant conclusion is reached that the derivative of the
distance a body travels as a function of time is the
body’s velocity.

Thus, the velocity of a freely falling ball is

v =s" = 32t.

Fig. 9. Point A is called a maximum because here the function
reaches a greater value than it has at any other point in the
immediate neighborhood. Point B is called a minimum because
here the function has a lesser value than it has at any other
point in the immediate neighborhood. Point F, where the curve
changes the direction of its convexity, is an inflection point.
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Similarly, since acceleration is defined as rate of
change of velocity, the derivative of a body’s velocity
is its acceleration:

=7 =8§"=32

That is, the speed of the ball increases at the rate of
32 feet per second for each second that the ball is
falling. In fact, if air friction is neglected, all freely
falling objects on the earth’s surface have the same
acceleration of 32 ft/sec?, and this acceleration is
called the acceleration due to gravity.

Example 2. The problem is to find the maximum
height that a ball will reach if it is thrown upward at
a velocity of 100 feet per second. From physics, the
height is given as a function of the time t by the fol-
lowing formula:

h(t) = 100 t — 16t2.
R’(t) = 100 — 32t.

Differentiating a second time,
h'(t) = —32.

Since the second derivative is negative for all values of
t, any point for which k/(t) = 0 will be a maximum.
Setting the first derivative equal to zero,

Differentiating,

100 — 32t = 0;
32t — 100;

100 . .1

= 0s 3=.

32’ 7 8

Thus the ball will reach a maximum height just 3%

seconds after it is thrown. The maximum height can
be found by substituting this value of ¢ into the expres-
sion for the height of the ball:

h (3—) — 100 (3—) — 16 (3 )

56l feet.

S

Example 3. A pebble dropped in the water sends out
a circular ring whose radius increases at the constant
rate of 1 foot per second. The problem is to determine
how fast the area of the ring is growing when the
radius is 5 feet.

The area of the circle is given by the function

Fig. 10. As the circle expands from radius r to radius (r 4 Ar),
its area grows by an amount equal to the shaded region. The
shaded area is approximately 2xrAr. Division by Ar shows that
the rate of change of the area of the circle with respect to the
change in its radius is numerically equal to its circumference.

HOW FAST DOES THE AREA CHANGE?

A = =2,

The instantaneous rate of change of this funetion ic
simply its derivative:

A’ = 2xr.

When r equals 5,
A’ =107 = 10-3.14 = 31.4,

and thus the area is growing at the rate of 31.4 square
feet per second. The rate of change of the area of the
circle is equal to the circumference of the circle, 2#r.
This should be intuitively clear, since as the circle ex-
pands a very tiny distance (the shaded section of
Fig. 10), its area grows by an amount approximately
equal to the area of an imaginary string looped around
the circle. The string could be straightened out into a
rectangle of length 27r and width Ar. The area of this
rectangle would then be 27rAr. The rate of change of

2rTAT
T

the area would then be , Or 2ar.

Integral Calculus

The integral calculus, like the differential calculus,
is based on the concept of the limit. Quantities called
integrals are each defined as the limit of a sum, and
the process of taking this limit is called integration.
Integration may be used to find the area enclosed by
curved lines or the volume enclosed by curved surfaces.

Area Under a Curve. The area of any figure bounded
by straight lines can be found by elementary geome-
try. The figure is simply divided into rectangles and
triangles, the areas of which are easily found and can
be added together. (See Fig. 11.) The area of a figure
bounded by a curve, however, cannot be found in this
way. Such a problem can be solved by applying the
concept of the limit,

For example, in the case of the curve in Fig. 12, the
height above the x-axis is given by the function f(x).
The desired area is that bounded by the curve, the
x-axis, and the two vertical lines x —a and x = b. If
this area is divided into a number of rectangles, as in
Fig. 13, it is clear that the areas of the rectangles will
approximate the desired area. If there are n rectan-
gles, the x-axis will be divided into nm intervals. The
length of the first interval may be called k,, the length
of the second h,, and so on up to k,. Somewhere in the
first region a point x, is selected. The height of the
curve at this point is f(x,), and the rectangle is given
this value as its height. The area of the first rectangle
is its height times its width, or

f(x,)h,.

Similarly, the area of the second rectangle is f(x,)h,,
and the area of the nth rectangle is f(x,)k,. The sum
S of these areas will approximate the total area A of
the figure:

S = f(x1)h1 + f(x'_z)hg +. .+ f(xn)hn'

If the figure is divided into a larger number of rec-
tangles, as in Fig. 14, the approximation given by the
formula above will be more exact. In other words, as
the number of rectangles (n) gets larger and larger
(that is, as n approaches infinity), and as the widths
of the rectangles get smaller and smaller (that is, as
the largest h approaches zero), the sum S will get
closer and closer to the exact area of the figure. If the
sum S approaches a limit (as m approaches infinity



and the largest h approaches zero), then this limit is
called the definite integral of the function f(x), and is
written

b

[ e ax.
This notation may be read “the definite integral of
f(x) between the limits @ and b.” The symbol f is an
Fig. 11. The area of any polygon can be found by dividing it

into triangles and rectangles and summing the separate areas
of the simpler figures, whose areas can be found easily.

AREA OF A POLYGON

AREA UNDER A CURVE

¥ = f(x)

Fig. 12. The area bounded by a figure having at least one curved
boundary can usually be found only by integration.

Fig. 13. If the area under the curve is divided into rectangles,
and their separate areas summed, an approximation to the true
area under the curve will be obtained. The area of the first
rectangle, for example, is its height, f(xi), times its width, hi.

APPROXIMATION TO THE AREA
y BY MEANS OF RECTANGLES
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INTEGRATION — THE LIMIT OF A SUM
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A=f(x, )b, + f(x)h, + ... + f(%n) R
= [*i(e)an

Fig. 14. If the number of rectangles is greatly increased, a closer-
approximation can be made. As the number approaches infinity,
and as the width of the largest rectangle approaches zero, the
limit of the sum of their areas is equal to the true area. The
process of taking the limit is called integration.

elongated form of the letter S, and the symbol dx indi-
cates that the differences between consecutive values
of x have been allowed to approach zero.

Finding the Value of a Definite Integral. The definition
above may now be applied to a specific example. In
Fig. 15, a parabola given by the function f(x) = x2 is
graphed. What is the area under this parabola between
the points x = 0 and x = 6? If the area is divided into
n rectangles of the same width, the width of each will

be given by the expression % Then the value of x,

will be 9., the value of x, will be 2(% , the value of
n

x, will be 3 6 , and so on, up to the value of x,, which

is n(%). Thus, f(x,) = %)2, f(x,) = 22 %)2, o

and f(x,) = nZ(%)z. But the height of the curve at x,

Fig. 15. By integration the area under this parabola between
3

6
the points x = 0 and x = 6 can be shown to be 3 square units.

AREA UNDER A PARABOLA
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is also the height of the first rectangle, the height of
the curve at x, is the height of the second rectangle,
and so on. Thus the height of each rectangle is known
and may be used to calculate its area. For example.

the area of the first rectangle equals its width (%)
multiplied by its height (%)2;

(@)
n\n/ "’
Similarly, the area of the second rectangle equals
=G}
n n
and the sum of the areas of all the rectangles is given
by

=26 +2[=@)] @) ]-
S—Tz(z) +Z|:2 7 B B il &
6
n
the expression above, they may be factored out:

S=%(%)2[12+22+. . .+n2].

It can be shown that the sum indicated by the expres-
sion in brackets is given by

n(n+1)(2n+1)
6 ;

Since the terms = and (g . appear in every term of

The sum of the areas of the rectangles is thus

§ = G_:[n(n+ 1(2n + 1):|=%1[,—7:(n+ l)(2n+ 1)]

n 6 n n
63 1 1
==(14=)(24+=).
6 ( * n)( * n)
This sum approaches a limit as n approaches infinity,
1

because the terms — approach zero:
n

im s=8(1)(2)=8
n—> 6 3
Thus the definite integral of x2 as x ranges from 0 to 6
is
fedex — §—3 ="72.
0 3

Further, it is easy to see that the area under x2 as

x ranges from O to any other number a would be

a asd
fo x2dx = 3"
Fundamental Theorem. The value of any definite in-
tegral of a continuous function can be found by meth-
ods similar to those used in the preceding section.
However, these methods are often extremely compli-
cated and difficult. For this reason, one of the great
breakthroughs in the history of mathematics was the
discovery that definite integrals could be evaluated by
reversing the rules of differentiation, which are com-
paratively simple. In a somewhat simplified form, the
theorem states that if F(x) is any function whose de-
rivative is f(x), then

f f(x)dx = F(b) — F(a).

Any function F(x) whose derivative is f(x) is called a
primitive function of f(x). Thus, to find the value of a

definite integral J:f(x)dx, simply find a primitive

function F(x) such that F’(x) = f(x), and then sub-
tract F(a) from F(b).

Example 1. How this rule simplifies the process of
finding the value of definite integrals can be demon-
strated by using it to solve the problem discussed in
the preceding section. The problem was to find the
area under the curve f(x) = x2? between x =0 and
x = 6. Applying the rule for evaluating definite in-
tegrals,

fo"xzdx — F(6)—F(0),

where F(x) is a primitive function of x2.

The first step is to find a primitive function of x2.
‘This can be done by means of the rule of differential
calculus that the derivative of xm is mxm—1. That is,

if f(x) = am,
then f(x) = mxm—1,

Thus, to find the derivative of a power of x, first the
coefficient of x is multiplied by the exponent of x, and
then 1 is subtracted from the exponent. A primitive
function of a power of x can thus be found by revers-
ing these steps: First, 1 is added to the exponent of x
and then the coefficient of x is divided by the new ex
ponent. This procedure is applied to x2 as follows:

Step 1: x2+1 =23

1x3  x3
Step 2: —/— —=—.
P23=3
(Since the coefficient of x2 is 1, it need not be writ-

ten.) By differentiating %3, it can be shown that %3

is in fact a primitive function of x2. Substituting this
function for F(x) in the above equation,

¢ _6_0
j;xz dx_3 3
63
— PR B
3

Example 2. To find the area under the curve
f(x) = x3 between x =2 and x = 3, a similar proce-
dure is followed. Using the rule given in example 1,

the primitive function % is found. Thus,

[Paran =322

2

_81_16
4 4
:%, or 16%.

Indefinite Integrals. The examples above showed how
to start with a function f(x) and reverse the rules of
differentiation to arrive at another function F(x). The
function F(x), which we have called a primitive func-
tion, is often called an indefinite integral, and is
written

F(x) = f f(x)dx.

Note that the indefinite integral, unlike the definite in-
tegral, is not evaluated between limits. Any given
function may thus have many indefinite integrals. For
example, one indefinite integral of 3x2 is x%, another is
x3 4+ 5, and still another is x3 — 2. Since two indefinite



