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Preface

This textbook aims at a complete and concise description of the present knowledge
of nuclear and radiochemistry and applications in various fields of the natural
sciences. It is based on teaching courses and research spanning several decades.
The book is mainly addressed to advanced undergraduate students and to graduate
students of chemistry. Students and scientists working in physics, geology, min-
eralogy, biology, medicine, and other fields will also find useful information about
the principles and applications of nuclear and radiochemistry.

Traditionally, nuclear chemistry has been deeply tied to nuclear physics, coop-
eratively called nuclear science. At the same time, a wide field of applications of
nuclear and radiochemistry in other sciences has developed. Therefore, it was
considered important to bring together in one textbook a detailed presentation
of the physical fundamentals as well as applied aspects of nuclear chemistry
ranging from nuclear structure, nuclear masses, nuclear reactions, the produc-
tion of radionuclides and labeled compounds, the chemistry of the radioele-
ments, the study of radionuclides in the environment, all the way to the nuclear
and radiochemistry needed in nuclear technology. Applications also include the
use of radionuclides in analytical chemistry, in geo- and cosmochemistry, dating
by nuclear methods, and the use of radionuclides in the life sciences and
medicine.

For further reading, the relevant literature is listed abundantly at the end of each
chapter. Generally, it is arranged in chronological order, beginning with the litera-
ture of historical relevance, followed by more recent work subdivided according to
the subject matter into general and more specialized aspects.

After the passing of Professor Karl Heinrich Lieser, the younger author
(JVK) was approached by the Lieser family and by the publisher and was
motivated to prepare a generally updated third edition of this textbook. The
concept and structure of the book remain largely unchanged; however, new
developments and results have been incorporated, including the most recent
references. These updates concern the physical properties of atomic nuclei,
the nuclear force and nuclear structure, techniques in nuclear chemistry,
nuclear reactions, statistical considerations in radioactivity measurements, the
actinides and transactinides, radionuclide mass spectrometry, and modern
methods of speciation of radionuclides in the environment. These have been
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Preface

taken from teaching courses held at the Johannes Gutenberg University over
the last 30 years.

It is my pleasure to thank Mrs. Petra Sach-Muth for help with the software
“wiley-vch.dot” and Mr. Jiirgen Hubrath for scanning and impoving a large
number of new figures.

Mainz, April 2012 Jens-Volker Kratz
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12
Nuclear Reactions

A nuclear reaction is a process in which a nucleus reacts with a proton or another
nucleus, an elementary particle, or a photon to produce one or more other nuclei
and possibly other particles. The nuclear states that can be investigated in the decay
of radioactive isotopes as discussed in Section 11.9 are limited to a relatively low
energy range. A much larger energy range is accessible through nuclear reactions.
It is of great principle and practical importance to understand the various reaction
mechanisms that occur in nuclear collisions.

The phenomenon of nuclear reactions was discovered by Rutherford in 1919
when he observed that, in the bombardment of nitrogen with the 6.69MeV o
particles of *'Po, scintillation of a zinc sulfide screen persisted even when enough
material to absorb all the ¢ particles was interposed between the nitrogen and the
screen. Further experiments showed that the long-range particles causing the
scintillation were protons and Rutherford’s first reaction may be written

“N+ jHe -»"0+ [H

with the shorthand notation ""N(c, p)'’O where, as indicated here, atomic numbers
are commonly omitted. Most nuclear reactions are studied by inducing a collision
between two nuclei where one of the nuclei is at rest, the target nucleus, and the
other nucleus, the projectile, is in motion. In a nuclear reaction, there is conserva-
tion of the total number of nucleons A, charge, energy, momentum, angular
momentum, statistics, and parity. Nuclear reactions, like chemical reactions, are
always accompanied by a release or absorption of energy, and this is expressed by
adding the term to the right hand side of the equation. Thus, a more complete
statement of Rutherford’s first reaction is

"N+ 'He— "0+ 'H+Q

The quantity Q is the energy of the reaction or simply the reaction Q value. Other
than in chemistry, the convention is to assign positive Q values to energy-releasing
reactions (exoergic reactions) and negative Q values to energy absorption (endo-
ergic reactions). Another important difference between chemical reactions
and nuclear reactions must be pointed out. In chemical reactions, macroscopic
amounts of material undergo transmutation and heats of reaction are given per
mole of the reactants. In nuclear reactions, single processes are considered and

Nuclear and Radiochemistry: Fundamentals and Applications, Third Edition. Jens-Volker Kratz and
Karl Heinrich Lieser.
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2013 by Wiley-VCH Verlag GmbH & Co. KGaA.
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12 Nuclear Reactions

the Q values are therefore given per nucleus transformed. For example, the reac-
tion "“N(a., p)'"O has a Q value of —1.190 MeV or —1.19066 - 10 *ergs or —4.56 - 10"
calories per "N atom transformed. To convert 1 mole of "N to O would require
an energy of 6.022 - 10” - 456 - 10 "cal = 2.75 - 10" cal. This is five orders of
magnitude larger than the largest values observed for heats of chemical reactions.
The Q value is calculated with tabulated mass excesses, see Eq. (3.5), as Q =
A("N) + A('He) — (A(70) + A('H)) = 2.863 + 2.425 — (~0.811 + 7.28903) MeV =
—1.190MeV. Does that mean that the reaction can actually be produced by o. par-
ticles whose kinetic energies are just over 1.19MeV? The answer is no for two
reasons. Firstly, in the collision conservation of momentum requires that at least
4/18 of the kinetic energy of the o particle must be retained by the products as
kinetic energy. Thus only 14/18 of the o particle’s kinetic energy is available for
the reaction. The threshold energy of « particles for the “N(a, p)"’O reaction is
18/14 x 1.19MeV = 1.53 MeV. The second reason why the o particles must have
higher energies than the Q value is the Coulomb repulsion between the o particle
and the "N nucleus, Eq. (1.15),

Ve = ].44£M6V

R +R,
Setting R = 1.5A"" fm, we get a value of about 3.4MeV for the Coulomb barrier
between the o particle and the "N nucleus. Thus, classically, an o particle must
have 18/14 x 3.4 = 4.4MeV kinetic energy for the (o, p) reaction to occur even
though the energetic threshold for the reaction is only 1.53 MeV. In the quantum-
mechanical treatment of the problem, there exists a finite probability for barrier
penetration, but the probability is extremely small as we saw in the discussion of
o decay in Section 6.2.

12.1
Collision Kinematics

Generalizing the above discussion, and using the notation A, + A, - A, + A,, we
can describe the situation before the collision in the laboratory system by

m

Evb :;A.v‘f (12.1)

P, = mA . (12.2)

where m is the nucleon mass, A, is the mass number of the projectile, and v.. is
the velocity at infinite distance with

v, = /@zl.%‘) }& cmns ! (12.3)
mA, A,

In the center-of-mass system, Figure 12.1, before the collision, both ions move
toward the center of mass, S, with



12.1 Collision Kinematics

cm

S
Voo .II: Lab

Figure 12.1 Laboratory and center-of-mass system before the collision.

A,
v = A+ A Vs
L (12.4)
A
L =
A+ A,
The kinetic energy and momentum in the center-of-mass system are
[
B %(Amf +A})= % vl (12.5)

Rm = 'n(AIvI G AgUg)=yU,

where (1, the reduced mass, equals

Only the center-of-mass energy E,,, and the relative momentum P,,, are available
for the reaction. The remainder is translational energy (recoil energy) of the total
system

A
Elr.nh ~ — El;nlv (126)
A+ A,

and
Et m = El.ulv - Elr.ms (127)

The translational velocity of the center of mass relative to the laboratory system is

2E S Eran,\ -
= i v.=v, =, |——=1.389 [——— cmns"' (12.8)
A]‘*‘Al m(A|+Al) A]"'Ag

Another useful energy variable is the laboratory energy per nucleon

_Ew _Ew _m _,
= Sl Jon My (12.9)

After the collision, the situation is as depicted in Figure 12.2. In the center-of-mass
system the product A; is emitted with velocity v; under the center-of-mass angle
O. It is common to look explicitly at the projectile-like product A;; for the target-
like fragment, the corresponding variables result from trivial transformation.
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12 Nuclear Reactions

cm

Lab

cm

Figure 12.2 Center-of-mass and laboratory system after the collision.

Figure 12.2 also shows the situation in the laboratory system: vector addition of
u; and v, yields vy, under laboratory angle .. The connection between th,,
and O, is

U;sin ©® sSin®
tan By, = —— = (12.10)
Uy cosO + Uiy cosO + Ui
Uy
and vice versa
Uun Sill l’%lalv

O = 1)y, +arcsin
Us

[t is customary to introduce the kinematic variable y, = v,,,/v;. For elastic scatter-
ing vy = v, and 3 = A /A, For two colliding ions of equal mass, 3, = 1 and

Yy, = ©/2. In the general case of a two-body reaction, the quantity y is given by
112
‘:[A'A‘L] (12.11)
AA B +Q

where the Q value can also be determined as the difference of the kinetic energies
after and before the reaction as Q = E — E; equal to the total kinetic energy loss
TKEL = TKE; = TKE; = —Q. The e sign indicates that the particles need to be sepa-
rated far enough from each other so that the interaction potential is no longer
acting. Because of the conservation of the total energy, the Q value at the same
time corresponds to the difference of the rest masses of the initial and final state

(Eq. (3.5)).

12.2
Coulomb Trajectories

Figure 12.3 shows the classical trajectories of two colliding ions in the center-of-
mass system. The distance of closest approach between the two centers of gravity,
D, and the scattering angle © are related by



