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Preface

In the marine sciences, the practice of our craft requires an interdisciplinary
approach, where we must proficiently integrate the fields of biology, chemistry,
geology, and physics, with simultaneous training in mathematics and computer
science as well. And although some of us may prefer to pursue our scientific
endeavors in the controlled environment of our laboratories, our pursuit of
marine science (or, for that matter, any aquatic science) will invariably call us
to the field, where the natural world rarely obliges our desire for experimental
control. So we are challenged to grow our expertise in these multiple disciplines
and conduct our science in nature’s laboratory, a rather unforgiving place where
only the most difficult and perplexing scientific questions remain.

Field Methods in Marine Science was written as an introductory text to serve
as both a training manual and a trusted reference for marine science students
and early-career professionals. The book provides the reader with the key con-
ceptual linkages between the theory and practice of science, from the philoso-
phy of the scientific method to practical advice on designing appropriate field
experiments for hypothesis-testing and data analysis, and how to transition the
reader’s research “from measurements to models” and create numerical models
as new investigative tools. Unlike many other titles, this text was designed to be
broadly applicable to all of the major disciplines (biology, chemistry, geology,
mathematics, physics) within the marine sciences, as the fundamentals of field
methods and numerical modeling are ubiquitous throughout.

The text is organized into four distinct units: 1) First Principles, 2) Methods
of Data Acquisition, 3) Methods of Data Analysis, and 4) Methods of Data
Assimilation (Modeling). Each unit is designed as a self-contained plan of study,
allowing instructors greater flexibility to select discrete units as they develop cur-
riculum for their particular course. Units 1 and 2 (First Principles and Methods
of Data Acquisition) are relevant to traditional field methods and could be taught
as a single-semester course in field methods.

Unit 1 (First Principles) begins of course with Chapter 1, The Foundations of
Scientific Inquiry, which provides a philosophical justification of the sciences
and guides the reader through the stepwise process that forms the basis of all
scientific inquiry: the scientific method. Chapter 2, Introduction to Statistical
Inference, provides very practical advice and basic training in the clever (and
proper) use of statistics to summarize data and to infer meaning from those
data. Through the use of several clear examples, the reader is introduced to the
methods by which scientific hypotheses can be tested and analyzed in terms of
statistical significance.

Unit 2 (Methods of Data Acquisition) focuses on the development of the
research prospectus (experimental design) and the proper execution of that
experiment in the laboratory or in the field. Chapter 3, Experimental Design,
starts with the very basic ingredients that must be included in virtually all
lab or field experiments, and builds the reader’s confidence by tackling the
more subtle nuances of sampling effort and quantitative survey methods.
Chapter 4, Oceanographic Variables, provides an overview of how to describe
an ever-changing ocean in both time and space, and which essential mea-
sures should be most carefully considered, in terms of the biological, chemical,
geological, or physical phenomena under investigation. Chapter 5, Common
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Hydrologic Census Methods, presents the most commonly used methods for
collecting data from the aquatic medium, when the body of water itself is the
focus of inquiry. Chapter 6, Census Methods for Benthic Organisms, continues
with the general quantitative survey methods first introduced in Chapter 3, but
delivers more specific guidance (and more experimental design options) for
census methods specifically designed for organisms living in or on the bottom.
Not surprisingly, Chapter 7, Census Methods for Pelagic Organisms, shifts the
attention to those census methods and data collection strategies best suited for
those organisms either drifting or swimming in the water column.

Unit 3 (Methods of Data Analysis) returns to the realm of statistics and numer-
ical analysis, where our understanding of the basics from Unit 1 and our data
collection methods from Unit 2 are put to the test. In this unit, the reader is intro-
duced to the most common single- and multivariate analysis methods, including
the t test, one-way ANOVA, and various correlation and regression analyses. The
contents of this unit could be taught either as a stand-alone data analysis course
or as the second semester of a field methods sequence. Chapter 8, Introduction
to Univariate Analysis, starts off with the fundamentals of statistical associa-
tion, using the simplest case where two or more populations can be compared
(and tested for significant differences) through the use of only a single variable.
Chapter 9, Introduction to Multivariate Analysis, gently guides the reader into
the more complex statistical methods used to explore the associative and caus-
ative relationships among populations, using several different variables at once.

Unit 4 (Methods of Data Assimilation) represents the culmination of our
research, where the data collected from the methods outlined in Unit 2 and
the statistical relationships defined with the help of Unit 3 can now provide us
with the tools to develop numerical models of the very phenomena we have
been investigating. Since the chapters in this unit deal entirely with the basics
of numerical modeling, Unit 4 can be used as a resource for an Introduction to
Numerical Modeling course, or as a follow-up course (subsequent to the field
methods sequence) designed to help students use data acquired through previ-
ous field or laboratory work to develop their own numerical models. Chapter 10,
Fundamental Concepts in Modeling, leads the reader through an unintimidat-
ing prelude to numerical modeling, including a discussion of the fundamental
elements to every numerical model, as well as a working example of how to
take a conceptual map of complex dynamics (such as the nitrogen cycle) and
translate each of its elements into a cohesive numerical model in the subse-
quent chapters. Chapter 11, Model Structure, includes an intuitive approach of
how to define the spatial and temporal constraints of the model, how to popu-
late the variables in our model with measurements we already have on hand
(from our previous field research), and how our model can be used to interpo-
late values (using finite differencing as an example) when we are missing criti-
cal data. Chapter 12, Modeling Simple Dynamics, continues with the example of
the nitrogen cycle (used in Chapters 10 and 11) and demonstrates to the reader
how complex interrelationships can be systematically broken down into several
constituent parts, where each can be solved as a much simpler model. Then in
Chapter 13, Modeling Complex Dynamics, these simpler models are stitched
back together following the conceptual model we first designed back in Chapter
10, thereby re-creating the complex dynamics we originally dissected to make
our modeling tasks more manageable. Finally in Chapter 14, Modeling Large
System Dynamics, the reader is introduced to the four most prevalent types of
models used to model large system dynamics: hydrodynamic, biogeochemical,
radiative transfer, and ecological models.

Itis hoped that the content and organization of this text shall provide an oppor-
tunity for both instructor and student to bridge their gains in knowledge and
skills across multiple semesters, and in so doing shall enable students to make
use of research and study products acquired from their previous coursework.



The design of this text (as a plan of study) was specifically engineered to have
significant implications for science students enrolled in field-based courses and
those undertaking honors projects that require theses or directed or indepen-
dent study. Of course, this text was also designed for the benefit of graduate level
and early-career professional scientists, who may not require this text in an aca-
demic setting, but may find it to be a valuable tool for their professional develop-
ment and training.
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Diffusive and advective transport (0X) move

biomass throughout the domain in the

horizontal dimension 278
Vertical migration and sinking (6Z) move biomass

throughout the domain in the vertical

dimension 278
Reproduction (0Y) represents the fraction of

growth that is invested in the next generation 278
Respiration (AR) is the loss of biomass attributed

to gaseous wastes 278
Excretion (0F) is the loss of biomass attributed

to liquid wastes 279
Egestion (0F) is the loss of biomass attributed

to solid wastes 279

Mortality (0M) is always represented as a loss of
biomass, but it comes in many forms 279



