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Preface

Advances in nanotechnology over the past decade have made scanning electron microscopy
(SEM) an indispensable and powerful tool for analyzing and constructing new nanomaterials.
Development of nanomaterials requires advanced techniques and skills to attain higher quality
images, understand nanostructures, and improve synthesis strategies. A number of advance-
ments for SEM such as, field emission guns, electron back scatter detection (EBSD), and
X-ray element mapping, have improved nanomaterials analysis. In addition to being an analysis
tool, SEM can be integrated with the latest technology to perform insitu nanomaterial engi-
neering and fabrication. Some examples of this integrated technology include nanomanipula-
tion, electron beam nanolithography, and focused ion beam (FIB) techniques. Although these
techniques are still being developed, they are widely applied in every aspect of nanomaterial re-
search. This book will introduce some of the new advancements in SEM techniques and demon-
strate their possible applications.

The first section covers basic theory, newly developed EBSD techniques, advanced X-ray
analysis, low voltage imaging, environmental microscopy for biomaterials observation, e-beam
nanolithography patterning, FIB nanostructure fabrication, and scanning transmission electron
microscopy (STEM). These chapters contain practical examples of how these techniques are
used to characterize and fabricate nanomaterials and nanostructures.

The second section discusses the applications of these SEM based techniques, including
nanowires and carbon nanotubes, photonic crystals and devices, nanoparticles and colloidal
self-assembly, nano-building blocks fabricated through templates, one dimensional wurtzite
semiconducting nanostructures, bio-inspired nanomaterials, in-sitzu nanomanipulation, and cry-
temperature stage in nanostructure research. These applications are widely used in fabricating
and engineering new nanomaterials and nanostructures.

The unique feature of this book is that it is written by experts from leading research
groups, who specialize in the development of nanomaterials using these SEM based techniques.
Additional contributions are made by application specialists from several popular instrument
vendors concerning their techniques to characterize, engineer and manipulate nanomaterials in-
situ SEM. This book should be a useful and practical guide for nanomaterial researchers, as
well as a valuable reference book for students and SEM specialists.

Weilie Zhou and Zhong Lin Wang
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Weilie Zhou, |Robert P. Apkarian|, Zhong Lin Wang,and David

Joy

1.1 Introduction

The scanning electron microscope (SEM) is one of the most versatile instruments available for
the examination and analysis of the microstructure morphology and chemical composition char-
acterizations. It is desirable to understand several of the basic principles of light optics in order
to understand the fundamentals of electron microscopy. The unaided eye can discriminate ob-
jects subtending about 1/60° visual angle, corresponding to a resolution of ~0.1 mm (at the
optimum viewing distance of 25 cm). Optical microscopy has the limit of resolution of ~2,000 A
by enlarging the visual angle through optical lens. Light microscopy has been, and continues to
be, of great importance to scientific research. Since the discovery that electrons can be deflec-
ted by the magnetic field in numerous experiments in 1890’s'"?, electron microscopy has been
developed by replacing the light source with high energy electron beam. In this section, we
will for a split second go over the theoretical basics of scanning electron microscopy including

the resolution limitation, electron beam interactions with specimens, and signal generation.

1.1.1 Resolution and Abbe’s equation

The limit of resolution is defined as the minimum distances by which two structures can be sep-
arated and still appear as two distinct objects. Ernst Abbe proved that the limit of resolution
depends on the wavelength of the illumination source. At certain wavelength, when resolution
exceeds the limit, the magnified image blurs.

Because of diffraction and interference, a point of light cannot be focused as a perfect dot.
Instead, the image will have the appearance of a larger diameter than the source,consisting of a
disc composed of concentric circles with diminishing intensity. This is known as an Airy disc
and is represented in Fig. 1. 1(a). The primary wavefront contains approximately 84 % of the

light energy, and the intensity of secondary and tertiary etc. wavefronts decay rapidly at higher
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orders. Generally, the radius of Airy disc is defined as the distance between the first order peak
and the first order trough, as shown in Fig. 1. 1(a). When the center of two primary peaks are
separated by a distance equal to the radius of Airy disc, the two objects can be distinguished
from each other, as shown in Fig. 1. 1(b). Resolution in a perfect optical system can be de-

scribed mathematically by Abbe’s equation. In this equation:

(@)

S

Fig. 1.1 Illustration of resolution in Airy disc (a) and wavefront(b).

d=0.612) / nsina
where: d is resolution; A is wavelength of imaging radiation; 7 is index of refraction of medium
between point source and lens, relative to free space; « is half the angle of the cone of light
from specimen plane accepted by the objective (half aperture angle in radians); nsina is often
called NA (numerical aperture).

Substituting the illumination source and condenser lens with electron beam and electron-
magnetic coils in light microscopes respectively, the first transmission electron microscope
(TEM) was constructed in 1930’s"), in which electron beam was focused by an electromagnet-
ic condenser lens onto the specimen plane. The scanning electron microscope (SEM) utilizes a
focused electron beam to scan across the surface of the specimen systematically, producing
large numbers of signals, which will be discussed in detail later. These electron signals are

eventually converted to a visual signal displayed on a cathode ray tube.
1.1.2 Interaction of electron with samples

Image formation in the SEM is dependent on the acquisition of signals produced from the elec-
tron beam and specimen interactions. These interactions can be divided into two major catego-
ries: elastic interactions and inelastic interactions. Elastic scattering results from the deflection
of the incident electron by the specimen atomic nucleus or by outer shell electrons of similar en-
ergy. This kind of interaction is characterized by negligible energy loss during the collision and

by a wide-angle directional change of the scattered electron. Incident electrons which are
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elastically scattered through an angle of more than 90° are called backscattered electrons, and
yield a useful signal for imaging the sample. Inelastic scattering occurs through a variety of in-
teractions between the incident electrons and the electrons and atoms of the sample, and result
in the primary beam electron transferring substantial energy to that atom. The amount of ener-
gy loss depends on whether the specimen electrons are excited singly or collectively and on the
binding energy of the electron to the atom. As a result, the excitation of the specimen elec-
trons during the ionization of specimen atoms leads to the generation of secondary electrons,
which are conventionally defined as possessing energies of less than 50 eV and can be used to
image or analyze the sample. In addition to those signals that are utilized to form an image, a
number of other signals are also produced when an electron beam strikes a sample, including the emis-
sion of characteristic X-rays, Auger electrons, and cathodoluminescence. We will discuss these signals

in the later sections. Fig. 1. 2 shows the regions from which different signals are detected.

1° Beam
Secondary electrons Backscatterred electrons
Auger electrons

Characteristic X-rays

;\\\i

Fig. 1.2 Illustration of several signals generated by the electron beam-specimen interaction in the scanning elec-

X-ray continuum

%

tron microscope and the regions from which the signals can be detected.

In most cases when incident electrons strike the specimen surface, instead of being
bounced off immediately, the energetic electrons penetrate into the sample for some distance
before they encounter and collide with a specimen atom. In doing so the primary electron beam
produces what is knowq as a region of primary excitation, from which a variety of signals are
produced. The size and shape of this zone is largely dependent upon the beam electron energy
and the atomic number, and hence the density, of the specimen. Fig. 1. 3 illustrates the varia-
tion of interaction volume with respect to different accelerating voltage and atomic number. At
certain accelerating voltage, the shape of interaction volume is “tear drop” for low atomic num-
ber specimen and hemi-sphere for specimens of high atomic number. The volume and depth of
penetration increase with an increase of the beam energy and fall with the increasing specimen

atomic number because specimens with higher atomic number have more particles to stop elec-



