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Preface

Quasilinear hyperbolic systems describe many physical phenomena. Particularly,
important examples occur in gas dynamics, shallow water theory, plasma physics,
combustion theory, nonlinear elasticity, acoustics, classical or relativistic fluid dynam-
ics and petroleum reservoir engineering. For linear hyperbolic system with suitably
smooth coefficients, it is well-known that Cauchy problem always admits a unique
global classical solution on the whole domain, provided that the initial data are
smooth enough. For nonlinear hyperbolic system, however, the situation is quite
different. Generally speaking, in this case, the classical solutions to Cauchy problem
exist only locally in time and singularities may occur in a finite time, even if the
initial data are sufficiently smooth and small.

This book is concerned with the classical solution to quasilinear hyperbolic sys-
tem. The greatest part of the book is the fruit academic research on the part of
the author. Some of what is contained in the book has been published for the first
time, and what was previously published in the form of separate papers has also been
revised and upgraded.

The whole approach to the problems under discussion is primarily based on
the theory on the local solution. For more comprehensive information, the reader
may refer to the book by Li Tatsien and Yu Wenci: Boundary Value Problems for
Quasilinear Hyperbolic Systems (Duke University Mathematics Series V, 1985).

It must be pointed out that the local existence and uniqueness of the classical
solution serves as an important basis for getting the global existence and uniqueness
of the classical solutions. The method employed in this book is the extension method
of local solution. This method requires us: first, establish the local classical solution
theory, then derive some uniform a priori estimates on the solution. Using these
uniform a priori estimates, we can draw the final conclusions. This method can be
expressed simply as follows:

Local classical solution theory
+

Uniform a priori estimates on solution
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Final results (Global existence or Breakdown)

Because the local classical solution theory has been established well, the key point of
this method is how to establish some uniform a priori estimates on the solution.
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Abstract

This book is concerned with Cauchy problem for the first order quasilinear hyperbolic
systems, some basic concepts of quasilinear hyperbolic systems and basic methods for
studying classical solutions are given. In this book, we discussed single quasilinear
hyperbolic equation, classical solutions to reducible quasilinear hyperbolic systems,
dissipation and relaxation problem, singularities caused by the eigenvectors, and
quasilinear hyperbolic systems in linearly degenerate type.

This book can be used for students and postgraduates of mathematical speciality,
teachers, scientists and engineers.
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Chapter 1

Introduction

In this chapter we give some basic concepts of quasilinear hyperbolic system:

genuinely nonlinear, linearly degenerate, weak linear degenerate, matching condition
etc.

1.1 Intention and Significances

For the following quasilinear hyperbolic system with inhomogeneous terms:
u + A(u)u, = B(u) (1.1.1)

where u = (u1,u2," - ,Up)" is unknown vector function, B(u) € C'(R") is known
vector function with B(u) = (bi(u), -+ ,bn(u))T, and A(u) = (aij(u))nxn(aij(u) €
CYR"), i,j = 1,2,--- ,n) is known matrix function, it is well-known that system
(1.1.1) may be arisen in many physics, such as nonlinear wave phenomena, gas dynam-
ics system, elastic dynamics, the kinetic theory and multiphase flow. These equations
play an important role in both science (such as physics, mechanics, biology, etc.) and
technology.

We have known that, for linear hyperbolic system, there are many very well re-
sults, however, for quasilinear hyperbolic system (1.1.1), the results are imperfections.

Generally speaking, the classical solutions to system (1.1.1) exists only locally in
time and singularities may occur in a finite time, even if the initial data are sufficiently
smooth or sufficiently small. To illustrate this, we give two simple examples.

Example 1.1.1 Consider the following Cauchy problem of Burger’s equation
with inhomenoeous term:

—_ a2
{ Ut + ULy = U (1.1.2)

t=0:u=up(x)
where ug(z) € C2([a, b)), uo(z) exists maximum value at the point By € (a,b), and
uo(Bo) >0, ug(Bo) # 0
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On the existence domain {(t,z)|0 < t < To,z € R} of the classical solution to
Cauchy problem (1.1.2), let

be characteristics, and
u(t, B) = ult, 6(t, B))
then, (¢, v) satisfies
do dv _ ,

—(—i? =, a =v, ¢(03:3) = :3’ U(O’ ﬁ) = UO(,B) (1'1-3)
It follows from (1.1.3) that
_ — w8 |
u(t,z) =v(t,0) = T tug(0) (1.1.4)
Obviously, the life span T for v(t, 8) satisfies
"~ maxuo(B)

Moreover, we have

¢(t,8) = B — In(1 — tuo(B))

Hence, ,

¢ tug(B)

— =14 —= 1.1.5

op 1 —tuo(B) (1.1.5)
Suppose that d;u blows up at t =T™ > 0. Since

ou 09
as t — T*. Thus, we obtain
* A 1
T = h(g) 2

uo(B) — ug(B)
By u}(6o) = 0,ug(Bo) # 0, we have
h'(Bo) # 0

Noting the continuity of h(3),there exists a neighborhood domain D(B) of Bp, such
that

K (B) #0, B € D(b)
Without loss of generality, we suppose that

K(B) >0, B € D(Bo)



Then, there exists G« € D(fp), such that

h(Bx) < h(fo)
that is,
T* <T (1.1.6)

(1.1.6) shows that we can choose suitably uo(z) such that u.(¢, =) first blows up
in a finite time.

On the other hand, by (1.1.4) and (1.1.5), if ug(z) € C*(R), and
up(z) <0, ug(z) >0, VzeER

then Cauchy problem (1.1.2) admits a unique global classical solution on ¢ > 0.
Example 1.1.2 Consider quasilinear hyperbolic system with dissipation:

{ Ut + Uy = —QU (1.1.7)

t=0:u=¢(z)

where a (a > 0) is a constant,@¢(z) € C'(R) with bounded C' norm.
Suppose that z = z(t, 3) (z(0, 8) = B) is characteristics, then, we have

u(t, ) = ¢(B) exp(—at)

¢'(B) exp(—o)
1+ a~1¢/(B)(1 — exp(—at))
By (1.1.8), if a (@ > 0) is suitably large, then J;u(t,r) admits uniform a priori
estimate, and then, Cauchy problem (1.1.7) admits a unique global classical solution
ont > 0.If & (o > 0) is suitably small, then there exists Top > 0 ( depending on 3
and a), such that

ug(t,x) =

(1.1.8)

uz(t,z) — 00

as t — T . Hence, the classical solution to Cauchy problem (1.1.7) must blow up in
a finite time. .

There is considerable practical interest in obtaining numerical approximations
of solution to system (1.1.1). Knowing that the solution is smooth and allows one
to take advantage of efficient high-order schemes which may be in appropriate for
solutions with discontinuity. In fact, the global existence of the approximate finite
element solution shows that the approximate solution is always in a neighborhood of
a classical solution to system (1.1.1).

Therefore, for the first order quasilinear hyperbolic system (1.1.1), it is of great
important in both theory and application to study the following three problems.

(1) Under what conditions, does the problem under consideration (Cauchy prob-
lem, Boundary value problem, Generalized Riemann problem etc.) for the first order

3



quasilinear hyperbolic system admit a unique global classical solution on t > 0¢ Bas-
ing on this problem, we can further study the regularity and the global behavior of the
solution, particularly the asymptotic behavior of the solution as t — +o0.

(2) Under what conditions, does the classical solution to the problem under
consideration blow up in a finite time? When and where does the solution blow up?
Which quantities will blow up? Can we fm;ther investigate the behavior or mechanisms
of the blow-up phenomenon? '

Even if the solution blows up in a finite time, physical phenomenon still exists
with singularities. Therefore one wants to understand further.

(3) How do the singularities, in particular, shocks grow out of nothing? What is
the structure of the singularities? What about the stability of the singularities?

For a single quasilinear equation, these problems have been solved completely by
the method of characteristics and the Whitney’s theory of singularities of mapping
of the plane into the plane.

A systematic theory on the global existence and the breakdown of the classical
solutions to quasilinear reducible hyperbolic system has been established. In the
system case, most of studies are concentrated on the reducible homogeneous 2 x 2
quasilinear hyperbolic system: '

e+ A(r,8)rz =0 (1.1.9)
st + p(r,z)sy =0 o
and the following simple and important case:
ut + A(u)uy =0 (1.1.10)

Suppose that system (1.1.10) is strictly hyperbolic and genuinely nonlinear (see (1.2.3)
and Definition 1.2.1).
Consider Cauchy problem of system (1.1.10) with the following initial data:

t=0:u=¢(z) (1.1.11)
F.John[*¥ proved that if A(u), ¢(z) € C?,suppd(z) C [ag, o], and

8 = (Bo — ao)? sup l¢"(z)| > 0

is small enough, then the first order derivatives of C? solution u = u(t, z) to Cauchy
problem (1.1.10)-(1.1.11) must blow up in a finite time. Liu Taiping6? generalized
F. John’s result to the case that a part of eigenvalues is genuinely nonlinear, while
the other part of eignvalues is linearly degenerate (see Definition 1.2.1). In this
situation he showed that for a quite large class of small initial data, the first order
derivatives of the classical solution still blows up in a finite time. Hérmander('!
improved F. John’s result, by a self-contained and somewhat simplified exposition of
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the method. Moreover, by determining the time of blow-up asymptotically, he gave
a sharp estimate on the life span of the solution.

Employing the nonlinear geometrical optics, S. Alinhacl!! reconsidered the result
presented by Hérrmander and gave a more precise estimate on the life span.

Here, we point out the work obtained by Li Tatsien et al ([25 and therein]). They
introduce some new concepts— null condition and weak linear degeneracy, gave
a quite complete result on the global existence and the life span of C! solution to
Cauchy problem (1.1.10)-(1.1.11), where the eigenvalues of system (1.1.10) might be
neither genuinely nonlinear nor linearly degenerate, and ¢(x) is small in the following
sense: there exists a constant x (x> 0) such that

0= igg{(l + |z]) 4 (1¢(2)] + 10 (2))} (1.1.12)

is small. Kong Dexing!'® generalized these results. Moreover, he also discussed the
non-strictly hyperbolic system.
The discontinuous initial value problem is advanced by Li Tatsien et al.
Consider system (1.1.10) with the following discontinuous initial data

ug (), <0
t=0:u=< 970 1.1.1
O:u { ug(:c), £>0 ( 3)

where ug (z) and ug (z) are bounded C? functions on z < 0 and x > 0 respectively,
and

ug (0) # ug (0) (1.1.14)

If the corresponding Riemann problem for system (1.1.10) with the following initial
data: ’ ‘

up (0), =<0
t=0:u=< 97 1.1.15
“ { ug(0), >0 ( )

possesses n + 1 constant states and n shock waves or n contact discontinuities with
small decay initial data, then, discontinuous initial value problem (1.1.10) and (1.1.13)
admits a unique global classical discontinuous solution » = u(t, z) only containing n
shocks or n contact discontinuities. This solution possesses a global structure similar
to the similarity solution to the corresponding Riemann problem. The result shows
that the similarity solution possesses a global nonlinear structure stability. At the
same time, Li Tatsien simplified the proof on existence of shocks, given by P.D.Lax![?2
and J.Smoller!®¥, and some concise inequalities are obtained.

For the case that B(u) # 0, if B(u) is linear vector value function, B(0) = 0,
and

A= —L(0)VB(0)L(0) (1.1.16)
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is weak row-diagonally dominant, where L(u) = (I;;(u)) is composed by the left eigen-
vectors, L~1(0) is the inverse of L(0), ||uo(z)||c: is sufficiently small, then, Cauchy
problem for system (1.1.1) admits a unique global classical solution on ¢ > 0. If B(u)
is nonlinear vector value function, B(0) = 0, and A is strictly row-diagonally domi-
nant, ||lug(z)||c1 is sufficiently small, then, Cauchy problem for system (1.1.1) admits
a unique global classical solution on ¢ > 0[25:37),

Kong Dexing!™19, Yu Jinguo and Zhao Yanchun(™! Zhang Weiguol™!, Liu
Fagui and Yang Zejiang!®!l improved above results.

1.2 Basic Concepts

1.2.1 Types of Eigenvalues

System (1.1.1) is called hyperbolic on the domain under consideration, if

(1) A(u) has n real eigenvalues Aj(u) (1 =1,2,--- ,n);

(2) A(u) is diagonalizable, i.e., there exists a complete set of left (resp. right)
eigenvectors Li(u) = (lix(w), - ,lin(w)) (resp. ri(u) = (r1:(u), -+ ,rni(u))T) corre-
sponding to \;(u) (i=1,2,---,n):

Li(uw)A(u) = Ni(w)li(u) (resp. A(u)ri(u) = Ai(u)) (1.2.1)
we have
det|lij(u)] #0 (resp. det|rij(u)| #0) (1.2.2)

System (1.1.1) is called strictly hyperbolic on a certain domain, if A(u) admits
n real and distinct eigenvalues \;(u) (i = 1,2,--- ,n). Without loss of generality, we
suppose that

Ar{u) < X(u) < --- < An(uw) (1.2.3)

All X;(u),lij(u) and r45(u) (5,5 = 1,2,--- ,n) are supposed to have the same
regularity as a;;(w) (4,7 =1,2,--- ,n).
Without loss of generality, we may suppose that

Lwriw)=4d&; (,j=1,2,---,n) (1.2.4)

and
rF(wriu)=1 (=1,2,---,n) (1.2.5)

where d;; stands for the Kronecker’s symbol.
Definition 1.2.1 The eigenvalue \;(u) is genuinely nonlinear (denoted by
GNL) in the sense of P.D. Lax, if

VAi(u)ri(u) #0, Yue R" (1.2.6)

6



While \;(u) is linearly degenerate (denoted by LD), if
Vi(w)ri(u) =0, Yue R" (1.2.7)

System (1.1.1) is GNL (resp. LD), if all eigenvalues are GNL (resp. LD).
Example 1.2.1 The following 2 x 2 quasilinear hyperbolic system in diagonal
form

T+ A(r,8)ry =0
{ st u(r,2)s, =0 (128
is GNL system if and only if
AA(r, s) Ap(r, s) 2
e # 0, s #0, VY(r,s)€R (1.2.9)
System (1.2.8) is LD system if and only if
OXr,s) _ o Oulrs) _ 2
o = 0, 5. = 0, V(r,s)€R (1.2.10)
that is
A(r,8) = X(s), plr,s) = u(r) (1.2.11)

Definition 1.2.2 System (1.1.10) satisfies the null condition, if each small
plane wave solution u = u(s) ( w(0) = 0), where s = az + bt (a,b are constants), to
system

ut + A(Q)uy =0
is always a solution to system (1.1.10).

Definition 1.2.8 The i-th (1 < i < n) eigenvalue \;(u) is weak linear de-

generate (denoted by WLD), if

VAi(uw)ri{u) =0 (Y|u| small)
holds along the i-th characteristic trajectory u = u(¥)(s) passing through v = 0,
defined by

{ & = r;(u(s)) (1.2.12)

u(0) =0
Therefore, if A;(u) is WLD, then,
Xi(u®(5)) = X:(0)

If all eigenvalues are WLD, system (1.1.1) is called the WLD. Obviously, if, in a
neighborhood domain of u = 0, the i-th eigenvalue A;(u) is LD in the sense of P.D.
Lax, then \;(u) is WLD.



For any C' solution u = u(t,z) to system (1.1.1)

dz

i Ai(u(t, ) (1.2.13)

is called the i-th characteristic direction, its integral curve is said to be the i-th
characteristics.

Let d 9 8
d—it & + Ai(u)_é;
then, along the i-th characteristic direction,

du_du ouds
d;t T ot O dt

Multiplying (1.1.1) by l;(u) from the left side, and noting (1.2.1), system (1.1.1)

equivalently reduces to the following system of characteristic form

= u + Ai(u)ug

li(u)% = 1) (e + Ni(w)ue) = L(w)Bw) (i=1,2,-,n) (1.2.14)
or n n

Zlij(u)(%"t’—' + Ai(u)%) = lLjubi(w) (=1,2,---,n) (1.2.15)

Jj=1 j=1 .

in which the i-th equation only contains the directional derivatives of all the unknown
functions along the i-th characteristic direction.

For the case that n = 2, it is well-known that at least in a local domain of u
there exist integral factors m;(u) # 0 (i = 1,2), such that

i (u)l,(u)du = Wi(u)(lil(u)dul + li2(u)dU2) (2 =1, 2)

is a total differential dU; (i = 1,2). Hence, taking U; and U as new unknown
functions, (1.2.14) reduces to a system of diagonal form

(1.2.16)

OUr + \MO:UL = f1
O0tUz + A20:Uz = fo

in which Uy, U are called the Riemann invariants.

Remark 1.2.1 Generally speaking, the preceding procedure for reducing sys-
tem (1.1.1) (with n = 2) to system (1.2.16) is only valid in a local domain of u.
However, we can see in the sequel that this procedure is actually globally valid in
some important practical case. In the case that n > 2, system (1.1.1), in general, can
not be reduced to the diagonal form.

Example 1.2.2 Consider system of isentropic flow with dissipation

Vg — Uy = 0
1.2.17
{ut+p(v)z+2au=0, a>0 ( )

8



where v = p~! is the specific volume, u is the velocity and p is the pressure with
satisfying
P(v) <0, p"(v)>0
For polytropic gases,
p=p(v)=Av7 (0<y<3,A>0)

It is easily to show that on any finite domain of v > 0, (1.2.17) is strictly
hyperbolic with two eigenvalues A and u:

A=—V-PO) <0<p=+v-p(v)

Moreover, introducing Riemann invariants (r, s):

2\/21.;70_3;_1, 0 2V Ay 1z

2r=u— s=u+ ——v
v

then, system (1.2.17) reduces to

{ Tt + Arg = —a(r + 8) (1.2.18)

8t + psz = —a(r + 8)

in the global sense, and we can easily check that the system (1.2.17) is GNL.
Example 1.2.3 Consider the nonlinear vibration string equation

where K = K(v) € C?, and
K@0)=0, K'(v)>0

Let
V=Uy, W=Ug (1.2.20)

then, (1.2.19) can be rewritten as the following first order quasilinear system

1.2.

in which (1.2.21) is strictly hyperbolic system with two distinct real eigenvalues

A=—/K'(v) <0< p=+K'(v)

Introducing Riemann invariants (r, s)

2r='w+/ K'(v)dw, 2s=u—/\/17(v—)dv
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