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PREFACE

The NATO Advanced Study Institute on "Cerebral Blood Flow:
Mathematical Models, Instrumentation, and Imaging Techniques" was
held in L*'Aquila, Italy, June 2-13, 1986. Contributions to this
program were received from the University of L*Aquila, Consiglio
Nazionale delle Ricerche, Siemens Elettra S.p.A., and Bracco S.p.A.

Recent studies of the cerebral blood circulation have lagged
behind analysis of other parameters such as glucose utilization,
transmitter distribution, and precursors. This Advanced Study Institute
tried to fill this gap by analyzing in detail different physical
techniques such as Autoradiography (including Double-Tracer Auto-
radiography and highly specific tracers as lodoantipyrine, Micro-
spheres), Single Photon Emission Computed Tomography, Nuclear Magnetic
Resonance. Each method was analyzed in regards to its precision,
resolution, response time.

A considerable part of this Institute was devoted tc the
mathematics of CBF measurement, in its two aspects, i.e. the modeling
of the underlying kinetic system and the statistical analysis of the
data. The mcdeling methods proposed included the development of a
differential algebra whereby the differential and integral equations
involved could be solved by simple algebraic methods, including graph-
theoretical ones; the statistical methods proposed included the
illustration of different parametrizations of possible use in the
interpretation of experimental results.

Aldo Rescigno
Andrea Boicelli
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STOCHASTIC MODELS AND LINEAR TRACER KINETICS

Aldo Rescigno

Section of Neurosurgery, Yale University School ‘of
Medicine, New Haven, CT, U.S.A.

Institute of Experimental and Clinical Medicine
University of Ancona, Ancona, Italy )

1. MEANING OF A MODEL X

The purpose of a model if to verify whether some hypo-
theses made on a real system are valid (Rescigno and Beck,
1987), and subordinately to determine the values of some of
the parameters that represent specific properties of the
system under study (Zierler, 1981). For instance the model
commonly used when dilution phenomena are expected, is a set '
of ordinary differential equations with constant coefficients,
while when diffusion phénomena are thg case, partial differen-
tial equations are to be used, finite difference equations for
delay phenomena, etc. ‘

In Nuclear Medicine and in Pharmacokinetics the compart-
ment model \is often used (Rescigno and Segre, 1964); it
consists of a set of linear differential equations of order
one with constant coefficients, and it implies the hypotheses
that the system described contains a finite number of compo-
nents, and that each component is homogeneous. These hypo-
theses exclude the presence of diffusion and of age-dependent
processes, or in general of transport of a non-Markovian
nature. The parameters computed from the experimental data
using this model are the transfer rates between compartments
and the turnover rates of compartments; they have a defined
physical meaning only if the model is appropriate (Beck and
Rescigno, 1970).

With n compartments the number of parameters necessary to
characterize the equations is n2, therefore, ignoring all
experimental errors, only n2 measurements are needed com-
pletely to describe the system under observation. With the
presence of experimental errors this number should be
increased to improve the reliability of the computed para-
meters. The cost of the measurements may be a factor of
importance. The strategy of the measurements may also be
important, i.e. measurements made at certain times may carry
more information than if made at other times. Some of the
parameters may be more "important” than others, i.e. their



information may be more "valuable". Above all, other para-
metrizations besides the classical one of the transfer rates
and turnover rates, may be more valuable in the sense that
they may be more directly connected to some externally measur-—
able or physically well-defined quantities, or they may be
more sensitive to specific treatments (Matis, Wehrly and
Gerald, 1983).

Of course if the hypotheses incorporated into the model
are not appropriate, the computed parameters have no gnoseo-
logical value. If we make some weaker hypotheses there is a
lesser chance of rejection of the model, but the real system
will not be described as fully as with a stronger model, i.e.
we will be able to determine fewer parameters; those para-
meters though are more reliable and may even be more
"valuable" in the sense hinted above.

The ideal situation would be to define parameters that
depend on the smallest possible number of hypotheses, but that
still have a physically meaningful interpretation.

One such example is given by Rescigno and Gurpide (1973).
While that approach is not completely "model-free", it is cer-
tainly very "robust", i.e. it allows to compute parameters
that are not very dependent of the assumptions of a specific
model. All this considered, we think that the experimental
data available to the investigator should be examined in terms
of a model implying a minimum number of assumptions and giving
the best physical interpretation to the parameters involved.

2. LINEAR STOCHASTIC KINETICS

Consider a particle in a living system and suppose that
that particle can be recognized in two different states of the
system, where by state we mean a particular location or a par-
ticular chemical form, or both. If one state is the precursor
of the other (not necessarily the immediate precursor), then
we can study the relationship among event A (presence of the
particle in the precursor state), event B (transition from
precursor to successor state), and event C (presence of the
particle in the successor state).

For any t and ¥ such that 0 <%< t, call £(%¥) the
probability of A at time 7 and h(t) the probability of C at
time t; the range of both functions is 0, 1. Suppose now that
B depends only on the interval of time separating A and C, so
that we can call now g(t-%)dT the conditional probability that
the particle is in C at time t if it left A in the interval
from T to ¥+dw,

The product

£(7) .g(t-®)dx

therefore is the absolute probability of A at time “Tand of C
at time t.

By integration of the above product we must obtain the
probability of C at time t irrespective of A, i.e.

:
(1) (£(0g(t-r)ax = h(t).
o

This is the well known convolution integral representing
the relationship among the variables of a linear, invariant
system, without invoking the properties of homogeneous, well-
mixed compartments.



By linear system is meant that two different solutions of
equation (1) can be added to give a new solution; in fact if a
solution of equation (1) is given by f;(t), hj(t), and an-
other one by fp(t), hy(t), then a third solution of equa-
tion (1) is f(t)+fo(t), hj(t)+ha(t), as can be
easily verified.

By invariant system I mean that a solution does not change
if the time origin is changed. In fact suppose that f£(t), h(t)
is a solution of eqguation (1), and consider the new function

f1(t) 0 for 0gt<ty,
f(t_to) for tZ’to.

For this function

¢ e
[f1(0gt-nar = [; £(7-to)g(t-7)at
(=} o

= (% (M g(t-te-v)at;
using now equation (1),

0 for Ogt<tg

3
fEf1(mg(t-mdx
h(t—to) for tgtor

nn

i.e. f£(t) and h(t) are shifted along the time axis by the same
quantity.

If we think of an experiment where a very large number of
identical particles is used, then the number of particles in A
and in C are good estimators of functions f£(t) and h(t) respec-
tively. Function g(t) represents the probability that a par-
ticle that left A at time zero will still be in C at time t;
therefore in a hypothetical experiment where all identical par-
ticles left the precursor at time zero, the number of par-
ticles found in the successor will be given by g(t).

In the following pages I shall try to show a number of
properties of equation (1) and how to use those properties to
interpret the results of some experiments.

3. DEFINITION OF MOMENTS

Given a generic function f(t) defined for all values of t
from 0 to + o0, define the moments,
e

(2) Fj = Lti/i! £(t)dt, i=0,1,2,...
and the relative moments,

00
(3) £3 = ftizir £(t)ae/r,,  i=1,2,3,...

provided that the integrals above converge.

I shall show in section 6 what can be done when one of
those integrals does not converge; for the time being we sup-
pose. that all those moments do exist.

Definition (3) applies only to values of i larger than
zero; for convenience we complete that definition .with

fo=l.

Frequently the moments of a function are defined without
the factor 1/i! shown in (2); I prefer to use this factor



because the moment generating functions defined in section 8
actually generate the moments as in (2) and (3) rather than
the moments defined without the factor 1/i!, and because the
expressions we shall find later on will be considerably sim-
pler. Observe also that these moments are just integral trans-
forms of function f£(t) with kernel ti/i!, very similar to

the Mellin transform, whose kernel is ti-l; even though in
the Mellin transform i is a complex variable while in these
moments it is a non-negative integer, they have many interes-
ting properties-in common. For more details see for instance
Bateman (1954).

4. PROPERTIES OF THE CONVOLUTION

Multiply both sides of equation (1) by ti/i1 and
integrate from 0 to +99,

e t Lad
Ltl/i:jf(t)g(t-‘r)d'r at = £ti/i! h(t)dt,
(-]

where 1 is any non-negative integer; change the order of inte-
gration,
&

(-] o0 .
Lf('r)j;ti/il g(t-T)dt.d% = hy;

change the variable of the inner integral,
(:;(1:) [:o(t+'r)i/il g(t)dt.dz = hj;
after expaqding the binomial we obtain finally,
(4) .Z:Fi-j.Gj = Hi; i=0,1,2,.;.
in particilar,
FoGo = Ho
F1Go + FoG1 = Hy
F9Go + F1Gy + FoGp = Hap
If we divide both sides of equation (4) by FoGo we get
(5) = £i-395 = hi.  i=1,2,3,...

The number of particles in a given state is in general
very large; if it can be observed as a function of time it
represents a very good approximation of the probability den-
sity function defined in section 2. This means that if the
functions f(t), h(t) corresponding to two given states can be
measured, then their moments can be computed and the moments
of the unknown function g(t) calculated using equations (4) or
(5).

These last moments can be given a clear physical meaning;
for instance Gg is the fraction of particles leaving the
first state that actually reach the second state (a quantity
analogous to the Bioavailability as defined in Pharmaco-
kinetics), g1 is the expected interval of time for a par-
ticle to move from the first to the second state, gg-f1/2
is the variance of this time divided by two, etc. (Rescigno
and Michels, 1973).



5. MOMENTS OF A COMPARTMENT

As an example we can evaluate the moments of a specific
system. Take a single compartment, i.e. a well mixed pool of
homogeneous particles, all with the same probability m.dt of
leaving it in the interval from t to t+dt, where m is a cons-
tant; in other words the probability of leaving the compart-
ment does not depend on the absolute time or on the time when
a particle entered it. If x(t) is the characteristic function
of that compartment, i.e. the probability that a particle is
in the compartment at time t, then -

x(t+dt) = x(t).(1-m.dt)

is the probability that a given particle present in that com-
partment at time t is still there at time t+dt; rearranging
this equation,

dx/dt = -m.x(t),
and integrating,
x(t) = x(0).e~Mt,

where x(0), the constant of integration, is the probability
that a given particle is present in the compartment at the
initial time. Using definitions (2) and (3) we get for a
single compartment,

X§y = X(0)/mi+l, i=0,1,2,...

Xj_ - 1/mi- i=1,2'3,---

6. NON-CONVERGING MOMENTS

In section 3 the moments and relative momenté were defined
subject to the condition that the integral

h.
(6) {eizit £(t)ae
a

converges; this requires that function f(t) decreases fast
enough when t increases. It is well known that most functions
used to describe biological systems are of exponential order,
i.e.' they have the property that a constant c>0 exists such
that the product e~Ctf(t) is bounded for all values of t
larger than some finite value; for a function of exponential
order the integral (6) always converges, no matter how large i
is. An exception is given by the functions describing a closed
system, i.e. a system from where not all particles are even-
tually lost; in this case

limit £(t) 4 0,
t—00

and the integral (6) does not converge for any non-negative
value of i. This is an obvious consequence of the fact that
the average time spent by a particle in such a system is in-
finite. We shall not consider this case, but the more interest-
ing case when function g(t), as defined in section 2, is of
exponential order, while function f(t) is bounded but does not



approach zero as t approaches infinity. This corresponds to
feeding a "regular" system with an endless stream of parti-
cles. Equation (1) shows that if function f(t) does not ap-
proach zero when t goes to infinity, neither function h(t)
will; therefore both £(t) and h(t) have undefined moments,
while the moments of g(t) are defined, but unknown.

From the hypothesis that f(t) is bounded, it follows that
e~Ctf(t) is of exponential order for any c¢>0; equation (1)
can be rewritten

&

showing that multiplying both £(t) and h(t) by e~¢t is
equivalent to multiplying g(t) by the same exponential. The
new functions e~Ctf(t) and e~Cth(t) have finite moments;

they can be used to compute the moments of the modified func-
tion e~Ctg(t); calling Gi* the moments of this last

function, then

w.
j;tl/i!.e“:tg(t)dt

Gi
R oo . s
=J; Z(-et)3/31.ei/in g () ae
o0 - . »
Gi* = = (-1)3cI(i+3)1/i131.Gi44s
3=° 19051 42 s

and by inversion
oe

(7) Gj = S_:ocJ(i+j)!/i!jl.Gi+j*, 120,153 e s
1:

In the frequent case when the functions £(t) and h(t) are
evaluated by measuring the activity of a radioactive tracer in
two states of the system, then the "true" probability density
functions are multiplied by the exponential function e-ct,
where ¢ is the decay constant of the nuclide used. If the
"measured" functions f£(t) and h(t) are not corrected for the
radioactive decay, then the moments Gj* should be correc-
ted using equations (7); these last corrections are frequently
easy because in general the infinite series in (7) converges
very rapidly. More important is the fact that the direct cor-
rection of f(t) and h(t) for the disintegration rate of the
nuclide involves a non-negligible error when that rate is very
high (Rescigno and Lambrecht, 1985), as shown in section 7.

7. RECORDING THE MOMENTS

If the functions f(t) and h(t) are known, their moments
can be computed using the definitions given in section 3.
However, the integrations required for the computation of the
moments of any function introduce some errors that are added
to the errors intrinsic to the measurement of the original
function.

Furthermore, any particle counter has a finite integration
time, therefore it does not measure the exact number of parti-
cles present at time t, but the average number of particles
present in a certain interval of time; this implies a non neg-
ligible error when the rate of change of the number of parti-
cles to be counted is large compared to the integration time
of the counter (Duncan et al., 1983). To have an idea of the
errors involved, consider the simple function



-mt
f(t) = e ;

its average value over the interval of time t1, tg is
éfg_mtdt/(tz—tl),

while its v;lue at the center of the interval is
exp[-m(t2-tl)/2];

a simple computation shows that the error committed when tak-
ing the former expression for the latter is larger than 10% if
tp-t31= 1.6/m, and is larger than 100% if tp-tj= 4.4/m.

With tracers having a physical half-life of less than a min-
ute, the acquisition time of a typical tomograph will cause an
excessive error in the determination of the true values of the
activity.

Both errors can be eliminated if the transformation func-
tion ---> moment is bypassed and the moments are recorded di-
rectly at the source, i.e. if the detector itself acts as an
encoder. . <

Call X(t) the number of radioactive particles present in a
voxel; the probability that an event will be recorded by an
appropriate detector in the interval of time from t to t+dt is
kX(t), where k is a constant depending upon the efficiency of
the detector and upon the disintegration rate of the radio-
tracer used; the probability of a double event in the infini-
tesimal time interval dt is an infinitesimal of order higher
than dt and can be neglected. The constant k can be determined
by measuring for a sufficiently long interval of time a cali-
brated source.

I shall ignore here the effect of the finite resolving
time of the detector, negligible if the counting rate is not
too fast.

Define the random variable N(t) equal to the number of
events recorded in the interval of time from 0 to t, with
distribution

p(r,t) = Prob{N(t)=r}.

Note that if X(t) is the number of radioactive particles
present in a voxel, then X(t) itself is a random variable,
because that number depends not only on the macro-processes
taking place in that voxel, but also on the number of disin-
tegrations having taken place in the preceding time interval
0, t.

The counter reads zero at the beginning of an experiment;
then, each time an event is recorded, the value of the random
variable N(t) increases by one unit; it does not change if no
events are recorded; therefore

p(0,0) =1
p(0,t+dt) = [1-kX(t)dt].p(0,t)
plr.t+dt) = kX(t)dt.p(r-1,t) + [1-kX(t)dt].p(r,t), >0

Divide by dt,

Vp(0,t) /% = -kX(t).p(0,t)



