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Preface

Learning is an essential way for humans to gain wisdom and furthermore for
machines to acquire intelligence. It is well acknowledged that learning algorithms
will be more flexible and more effective if the uncertainty can be modeled and
processed during the process of designing and implementing the learning algorithms.

Uncertainty is a common phenomenon in machine learning, which can be found
in every stage of learning, such as data preprocessing, algorithm design, and model
selection. Furthermore, one can find the impact of uncertainty processing on various
machine learning techniques; for instance, uncertainty can be used as a heuristic to
generate decision tree in inductive learning, it can be employed to measure the sig-
nificance degree of samples in active learning, and it can also be applied in ensemble
learning as a heuristic to select the basic classifier for integration. This book makes
an initial attempt to systematically discuss the modeling and significance of uncer-
tainty in some processes of learning and tries to bring some new advancements in
learning with uncertainty.

The book contains five chapters. Chapter 1 is an introduction to uncertainty.
Four kinds of uncertainty, that is, randomness, fuzziness, roughness, and nonspeci-
ficity, are briefly introduced in this chapter. Furthermore, the relationships among
these uncertainties are also discussed in this chapter. Chapter 2 introduces the induc-
tion of decision tree with uncertainty. The contents include how to use uncertainty
to induce crisp decision trees and fuzzy decision trees. Chapter 2 also discusses how to
use uncertainty to improve the generalization ability of fuzzy decision trees. Cluster-
ing under uncertainty environment is discussed in Chapter 3. Specifically, the basic
concepts of clustering are briefly reviewed in Section 3.1. Section 3.2 introduces two
types of clustering, that is, partition-based clustering and hierarchy-based clustering.
Validation functions of clustering are discussed in Section 3.3 and feature-weighted
fuzzy clustering is addressed in next sections. In Chapter 4, we first present an intro-
duction to active learning in Section 4.1. Two kinds of active learning techniques,
that is, uncertainty sampling and query by committee, are discussed in Section 4.2.
Maximum ambiguity—based active learning is presented in Section 4.3. A learning
approach for support vector machine is presented in Section 4.4. Chapter 5 includes
five sections. An introduction to ensemble learning is reviewed in Section 5.1.
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Bagging and boosting, multiple fuzzy decision trees, and fusion of classifiers based
on upper integral are discussed in the next sections, respectively. The relation-
ship between fuzziness and generalization in ensemble learning is addressed in
Section 5.5.

Taking this opportunity, we deliver our sincere thanks to those who offered us
great help during the writing of this book. We appreciate the discussions and revision
suggestions given by those friends and colleagues, including Professor Shuxia Lu,
Professor Hongjie Xing, Associate Professor Huimin Feng, Dr. Chunru Dong, and
our graduate students, Shixi Zhao, Sheng Xing, Shaoxing Hou, Tianlun Zhang,
Peizhou Zhang, Bo Liu, Liguang Zang, etc. Our thanks also go to the editors who
help us plan and organize this book.

The book can serve as a reference book for researchers or a textbook for senior
undergraduates and postgraduates majored in computer science and technology,
applied mathematics, automation, etc. This book also provides some useful guide-
lines of research for scholars who are studying the impact of uncertainty on machine
learning and data mining,

Xizhao Wang
Shenzhen University, China

Junhai Zhai
Hebei University, China



Symbols and
Abbreviations

Symbols

A The set of conditional attributes

Ajj The jth fuzzy linguistic term of the ith ateribute
Bel(-,-) Belief function

bpa(-,-) Basic probability assignment function

C The set of decision attributes

() I fdp Choquet fuzzy integral

DG 9 KL-divergence

DP(-) Decision profile

Fa The & cut-set of fuzzy set F

HY Moore-Penrose generalized inverse of matrix

/ Index set

k(- ) Kernel function

pf.]{) The relative frequency of A;; regarding to the /th class
POSI()2 The positive region of P with respect to Q

Po(ylx) Given x, the posterior probability of y under the model ©
R4 d dimension Euclidean space

R(X) Lower approximation of X with respect to R

R(X) Upper approximation of X with respect to R

Sg Scatter matrix between classes

Sw Scatter matrix within class

(S) [ fdun  Sugeno fuzzy integral

U Universe

Ujj The membership of the ith instance with respect to the jth class
(U) [ fdu Upper fuzzy integral

V() The number of votes of

X; The ith instance



xii ®  Symbols and Abbreviations

[x]g  Equivalence class of x with respect to R
Vi The class label of x;

) Degree of confidence

‘yg The significance of 2 with respect to Q

65-;”) The weighted similarity degree between the 7th and jth samples
ta(x) Membership function

Abbreviations

AGNES  AGglomerative NESting

BIRCH  Balanced iterative reducing and clustering using hierarchies
CE Certainty factor

CNN Condensed nearest neighbors

CURE Clustering Using REpresentatives

DDE Dynamic differential evolution

DE Differential evolution

DES Differential evolution strategy
DIANA  Dlvisive ANAlysis

DT Decision table

ELM Extreme learning machine

FCM Fuzzy C-means

E-DCT  Fuzzy decision tree

FDT Fuzzy decision table

F-ELM  Fuzzy extreme learning machine
F-KNN  Fuzzy K-nearest neighbors

FLT Fuzzy linguistic term

FRFDT  Fuzzy rough set—based decision tree

GD Gradient descent

GD-FWL Gradient descent—based feature weight learning
IBL Instance based learning

K-NN K -nearest neighbors

LS-SVM  Least square support vector machine

MABSS  Maximum ambiguity based sample selection

MEHDE Hybrid differential evolution with multistrategy cooperating evolution
MFDT  Multiple fuzzy decision tree

QBC Query by committee

ROCK  RObust Clustering using linKs

SMTC-C Similarity matrix’s transitive closure

SVM Support vector machine

WEPR Weighted fuzzy production rules
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Chapter 1

Uncertainty

Uncertainty is a common phenomenon in machine learning, which can be found
in every phase of learning, such as data preprocessing, algorithm design, and model
selection. The representation, measurement, and handling of uncertainty have a
significant impact on the performance of a learning system. There are four common
uncertainties in machine learning, that is, randomness [1], fuzziness [2], roughness
[3], and nonspecificity [4]. In this chapter, we mainly introduce the first three kinds
of uncertainty, briefly list the fourth uncertainty, and give a short discussion about
the relationships among the four uncertainties.

1.1 Randomness

Randomness is a kind of objective uncertainty regarding random variables, while
entropy is a measure of the uncertainty of random variables [5].

1.1.1 Entropy

Let X be a discrete random variable that takes values randomly from set &, its prob-
ability mass function is p(x) = Pr(X = x), x € X, denoted by X ~ p(x). The
definition of entropy of X is given as follows [5].

Definition 1.1 The entropy of X is defined by
HX) ==Y p(x)log, p(x). (1.1)
xeX

We can find from (1.1) that the entropy of X is actually a function of p; the following

example can explicitly illustrate this point.
1
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H(p)

Figure 1.1 The relationship between entropy H(p) and p.

Example 1.1 Let X ={0,1}, and Pr(X = 1) =p, Pr(X =0) = 1 — p.
According to Equation (1.1), the entropy of X is

H(X) = —p xlog, p— (1 —p) x log,(1 — p). (1.2)

Obviously, H(X) is a function of p. For convenience, we denote H(X) as H(p). The
graph of the function H (p) is shown in Figure 1.1. We can see from Figure 1.1 that
H (p) takes its maximum at p = 5.

Example 1.2 Table 1.1 is a small discrete-valued data set with 14 instances.
For attribute X = Outlook, X = {Sunny, Cloudy, Rain}, we can find from

Table 1.1 that Pr(X = Sunny) = p; = % Pr(X = Cloudy) = pp = %
Pr(X = Rain) = p3 = 1—54 According to (1.1), we have

5 S 4 4 5 5
H(Outlook) = v log, v ﬁlog2 T log2 = 1.58.

Similarly, we have

4 4 6 6 4 Bl
H( Tempc’mrurz’) = —1—4 l()gz ﬁ == ﬁ 10g2 ﬁ — E |0g2 ﬁ = 1.56.

i 7 7 7
H(Humidity) = r logz T: 1 logz i 1.00.
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Table 1.1 A Small Data with 14 Instances
X Outlook | Temperature | Humidity | Wind | y (PlayTennis)
x1 | Sunny Hot High Weak No
X7 | Sunny Hot High Strong No
x3 | Cloudy Hot High Weak Yes
X4 Rain Mild High Weak Yes
X5 Rain Cool Normal | Weak Yes
Xe | Rain Cool Normal | Strong No
x7 | Cloudy Cool Normal | Strong Yes
xg | Sunny Mild High Weak No
Xg | Sunny Cool Normal | Weak Yes
x10 | Rain Mild Normal | Weak Yes
Xx11 | Sunny Mild Normal | Strong Yes
x12 | Cloudy Mild High Strong Yes
x13 | Cloudy Hot Normal | Weak Yes
x14 | Rain Mild High Strong No
H(Wind) = —% log, % = %log2 % = 0.99.
9

H(PlayTennis) = — 2

2 logn 2 — 2
14 8271 T 14

log, = 0.94.

It is worth noting that the probability mentioned earlier is approximated by its
frequency, that is, the proportion of a value in all cases.

1.1.2 Joint Entropy and Conditional Entropy

Given two random variables X and Y, suppose that (X, Y) ~ p(x,y). The joint
entropy of X and Y can be defined as follows.

Definition 1.2 The joint entropy of (X, ¥) is defined as

HX,Y) ==Y plx,5) log, p(x,). (1.3)
xed ye)
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Given a random variable X, we can define the conditional entropy H(Y|X) of a
random variable Y.

Definition 1.3 Suppose (X, ¥) ~ p(x, y), H(Y|X) is defined as

H(Y|X) ==Y pe)H(Y|X = x)
xeX

= - Z (%) Z 2(lx) log, p(ylx)

xeX yey

==Y plx,p) log, pylx). (1.4)

xeX ye)

It is necessary to note that generally H(Y|X) # H(X|Y), but H(X) — H(X|Y) =
H(Y) — H(Y|X).

1.1.3 Mutual Information

Given two random variables X and ¥, the mutual information of X and ¥, denoted
by 7(X; Y), is a measure of relevance of X and Y. We now give the definition of
mutual information.

Definition 1.4 The mutual information of X and Y is defined as
[ Y) = HX) — HX|Y). (1.5)

We can find from (1.5) that /(X; Y) is the reduction of the uncertainty of X due to
presentation of Y. By symmetry, it also follows that

I(X;Y) = H(Y)— H(Y|X). (1.6)

Theorem 1.1 The mutual information and entropy have the following relation-

ships [5]:

I(X;Y) = HX) — HX|Y); (1.7)
I(X;Y) = H(Y) — H(Y|X); (1.8)
I(X;Y) = H(X)+ H(Y) - HX, Y); (1.9)
I(X:Y) = I(Y,X); (1.10)

1(X;X) = H(X). (1.11)



