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A ma mere qui m’a montré le chemin.
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Preface

Number theory is one of the few areas of mathematics for which most problems
can be understood by just about anyone, or at least by all those who are familiar
with very basic notions of algebra, combinatorics and analysis. Every teacher knows
the importance of practicing problem solving: indeed it turns out to be a great way
to learn how to reason, no matter the area of mathematics the problems come from.
Number theory is quite appropriate for this kind of exercise. For these reasons, a
collection of problems in elementary or classical number theory seems in our opinion
to be a complementary pedagogical tool for any learning process in mathematics.
Moreover, a clever choice of problems can greatly help to raise the curiosity of those
who try to solve them.

Unfortunately, very few books are entirely dedicated to problems in number
theory. These include the classical work of the great master W. Sierpinski entitled
250 Problems in Elementary Number Theory and published in Varsovie in 1970, a
book which is not well known and unfortunately out of print. Hence, our manuscript
does fill an important gap in this area and moreover it has the advantage of having
been written to reach a large audience. One can also see it as a practical complement
of an earlier book of the authors, that is Introduction & la théorie des nombres
published by MobDULO (2nd edition, 1997), or to any other introductory book in
number theory.

Nevertheless, we must admit that our main motivation for writing this book
has been our passion for number theory, namely this branch of mathematics which
distinguishes itself by its beauty and its numerous mysteries, by its simplicity and
its complexity, that is from the proof that there are infinitely many primes to the
recently established proof of Fermat’s Last Theorem.

This book obviously contains many problems from elementary number theory.
Some of these are well known and can be found here and there in introductory books
in number theory, while others are not so common. This is namely the case of several
problems which we picked from the lesser known manuscript of Sierpinski mentioned
above. Our book also contains some problems submitted to the readers of three well
known journals: American Mathematical Monthly, Mathematics Magazine and The
College Mathematics Journal. Finally, our book contains some 300 new problems
never published before.

The choice of problems is obviously subjective; hence, it is no coincidence that
the section on arithmetical functions is the longest! In any event, an effort has
been made to cover, or at least brush, each of the classical themes of elementary
number theory. On the other hand, since more and more students now have to
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use computers and software to do mathematics, our book can certainly help them
in this task. Indeed, many of the problems encourage the reader to use computer
software and at times, while searching for a solution, indicate how to write the
program that will bring about the solution to the problem.

Although most problems presented here use basic results which can be found
in just about any elementary book in number theory, we chose to include a section
which provides the basic definitions and the main theorems one needs to handle the
various subjects covered in the book. This “tool box” has the advantage that the
reader does not have to search here and there for the basic notions needed to solve
the problems. Finally, we found it convenient to include in this section a list of the
main arithmetic functions with their definitions, as well as a list of the constants
and symbols most frequently used in the text.

Our presentation is as follows: the first section provides the basic theory rele-
vant for the understanding and the resolution of the stated problems; the second
section gathers the statements of the problems; while the third section lists all the
solutions. At the end of the book, the reader will find a bibliography, a terminology
index and an index of authors.

We want to thank all those who, by their remarks and suggestions, contributed
to the realization of this manuscript. In particular, our thanks go to Jean-Lou De
Carufel (Québec), Nicolas Doyon (Québec), David Gill (Québec), Jacques Grah
(Québec), Nicolas Guay (Québec), Aleksandar Ivié (Belgrade), Imre Kétai (Bu-
dapest), Claude Levesque (Québec), Marc-Hubert Nicole (Québec), Erik Pronovost
(Québec) and Guy Robin (Limoges).

Part of this work was done in 2003 and 2004 while the first author was on
sabbatical in Tucson, Arizona. This author is grateful to the Department of Math-

ematics of the University of Arizona, in particular to Professor William Yslas Velez,
for making this possible.

Jean-Marie De Koninck

Armel Mercier
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Part 1

Key Elements from the Theory






Let N, Z, Q, R and C stand respectively for the set of positive integers (also
called natural numbers), the set of integers, the set of rational numbers, the set of
real numbers and the set of complex numbers.

Unless indicated otherwise,
e the letters a, b, ¢, d, 1,7, k, ¢, m,n,r and s stand for integers,
e the letters p and ¢ stand for prime numbers,
e the letters p1, po, p3, Pa, Ps, Pe, P7, - - . TEPresent the sequence of prime num-
bers 2,3,5,7,11,13,17,.. .,
e by twin primes, we mean a pair of prime numbers {p, ¢} such that ¢ = p+2.
Given an integer n > 2, we often write

aq 02

n=qy'aG:" 4"

for its canonical representation as a product of distinct prime powers: here the ¢;’s
are the primes dividing n written in increasing order and the exponents «;’s are
positive integers (see Theorem 11).

[Some Classical Forms of Argument]

THEOREM 1 (Induction Principle). Let S be a set of natural numbers having
the following two properties:

(i) 1€ 8,
(ii) ifk € S, thenk+1€ S.
Then S = N.

THEOREM 2 (Pigeonhole Principle). If more than n objects are distributed
amongst n boxes, then one of the boxes must contain at least two objects.

THEOREM 3 (Inclusion-Exclusion Principle). Let A be a set containing N ele-

ments and let P, P,,..., P, be distinct properties that each element of A must
satisty. If n(P;,, P,,, ..., P, ) stands for the number of elements of A having all the
properties P; , P;,, ..., P;,, then the number of elements of A having none of the r

properties is equal to
N — (n(Pl) +n(P2) + - +n(P.,.)) ¥ (H(Pl, Py) +n(Py, P3)+--- +7?«(Pr—1,Pr))

_(n(P13P27P3)+n(P1’P2=P4)+"'+n(PT—23PT—1:PT)> e
+(—1)TN(P1,P2,...,PT).

Inequalities

THEOREM 4 (Cauchy-Schwarz Inequality). Let ay,as,...,an, b1,b2, ..., by be

real numbers. Then
n 2 n n
(Ton) <>a Y
i—1 i=1 i=1

3



4 1001 PROBLEMS IN CLASSICAL NUMBER THEORY

THEOREM 5 (Arithmetic-Geometric Means Inequality). Let ay,as, ... ,a, be
positive real numbers. Then

aytax+---ta
n ?

(a1a2 as an)I/” <

with equality if and only if ay = as = ... = ay,.

Divisibility

DEFINITION 1 (Binomial Coefficients). Let n be a positive integer and k an
integer satisfying 0 < k < n. We define the binomial coefficient (’,:) by

ny n!
k) kl(n—k)
where 0! =1 andn! =n(n—1)---3-2- 1.

THEOREM 6 (Binomial Theorem). Let a,b € R and n € N. Then

(a+b)" = i (Z)a"’_kbk.

k=0

In particular, it follows from Theorem 6 that

n n
Z(—l)k(:) =(1-1)"=0 and Y (Z) =(1+1)"=2".
k=0 k=0

DEFINITION 2. Let a,b € Z with a # 0. We say that a divides b if there exists
an integer ¢ such that b = ac, in which case we write a|b and say that a is a divisor
of b. If a does not divide b, we write a /b. In the case where alb and 1 < a < b, we
shall say that a is a proper divisor of b. We write p®||n to mean that p*|n while
p**t1 does not divide n.

THEOREM 7 (Euclidean Division). Let a,b € Z, a > 0. Then, there exist
integers q and r such that b = aq + r, where 0 < r < a. Moreover, if a does not
divide b, then 0 < r < a.

DEFINITION 3 (Greatest Common Divisor). Let a,b € Z \ {0}. The greatest
common divisor (or GCD) of a and b, denoted by (a,b), is the unique positive
integer d satisfying the following two conditions:

(1) dla and d|b, (i) if c|la and ¢|b, then ¢ < d.
Similarly, if a;,as,...,a, € Z \ {0}, the GCD of a;,as,...,a,, denoted by

(a1,az,...,a,), is the unique positive integer d satisfying the following two con-
ditions:
() dla1, dlag, ..., dlay, (#4) if c|ay, clag, ..., cla,, then ¢ <d.
THEOREM 8. Let ay,as, ...,a, € Z\{0}. Then there exist integers 1, Ty, ..., T,
such that (ay,as,...,a;) = a1 + ayTs + - - + ap 2.

THEOREM 9. Let a,b € Z be such that ab # 0. Let d be a positive integer.
Then
d|la and d|b,

de= oyl = { cla and ¢|b = ¢|d.
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THEOREM 10 (Euclid’s Algorithm). Let a,b € Z, a > 0. Applying successively
the euclidean division (Theorem 7), we obtain the sequence of equalities

b = aq +ry, 0<r <a,
a = T1q2 + T2, 0<rs €1y,
T = reqz+r3, 0<r3<ry
Tj—2 = Tj-14; + 15, 0< Ty <Tj—1,
Tj—1 = Tidj+1,
where ; = (a, b).

DEFINITION 4. The integers ay,as,...,a, are said to be relatively prime if
(a1,as,...,a,) =1, while they are said to be pairwise coprime if (a;,a;) =1 when
i gs

DEFINITION 5 (Lowest Common Multiple). Let ay,as,...,a, € Z\ {0}. The
lowest common multiple (or LCM) of ay,as,...,a,, denoted by [ay,as,...,a,], is
the smallest positive integer amongst all the common multiples of ay,as, ..., ar.

[Prime Numbers ]

THEOREM 11 (Fundamental Theorem of Arithmetic). Each integer n > 2 can
be written as a product of prime numbers, and this representation is unique, apart
from the order in which the prime factors appear. In particular, n can be written

in the form
n=q"q" g,
where the q;’s are distinct prime numbers and where the «;’s are positive integers.

THEOREM 12. If q1,qs,...,q, are prime numbers and if a = ]_[leqf“ and
b=T1I_, qiﬁ", with a; > 0 and 3; > 0 fori=1,2,...,r, then

T T
(a,b) = H q;mn(a.',ﬁi) and [a7 b] _ H q;nax(ai,ﬁi)_
1=1 =1

Similarly, if @ = [[;_, ¢, b = H:Zlq?‘, c=[[_;¢" with a; > 0, 8; > 0 and
v >0fori=1,2,...,7, then

i T
(a,b,c) = Hq;nm{a.-.ﬁim} and [a,b,c] = H q;nax{ai,ﬁi,fy,}.
= i=1

THEOREM 13 (Euclid’s Theorem). There exist infinitely many prime numbers.

THEOREM 14 (Dirichlet’s Theorem). Given two positive integers a and b with
(a,b) = 1, the sequence of numbers an + b, n = 1,2,..., contains infinitely many
prime numbers.

THEOREM 15 (Bertrand’s Postulate). For each positive integer n, there exists
a prime number p satisfying n < p < 2n.

THEOREM 16. The series }_,1/p and the product [, (1 + %), where in each
case p runs through the set of all prime numbers, both diverge.
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THEOREM 17 (Prime Number Theorem). Let w(z) be the number of prime
numbers < . Then
m(x)

z—oo z/ logx -

THEOREM 18 (Mertens’ Theorem). As z — oo,

II{~3)~%z
P logz’

p<x

Bl

n—oo

where v is Euler’s constant defined by v = lim ( — log n).
k=1

Congruences

DEFINITION 6. Let a,b,m € Z, m # 0. We say that a is congruent to b modulo
m, and we write a = b (mod m), if m|a — b; if a is not congruent to b modulo m,
we write a Z b (mod m).

THEOREM 19. Let a,b,c,d,m € Z, m > 0. Then
(1) @ =a (mod m);
(2) @a=b (mod m) if and only if b= a (mod m);
(3) ifa=b (mod m) and b = ¢ (mod m), then a = ¢ (mod m);
(4) ifa=b (mod m) and ¢ = d (mod m), then ac = bd (mod m) and ax +
cy = bz + dy (mod m) for all z,y € Z;
(5) ifa=b (mod m) and d|m, d > 0, then a = b (mod d).

THEOREM 20. Let a,m,my,ma,...,m, € N and z,y € Z. Then
(i) ax = ay (mod m) if and only if x =y (mod m/(a,m));
(ii) if ax = ay (mod m) and (a,m) = 1, then x =y (mod m);

(iii) « =y (mod my) for i =1,2,...,r if and only if

r=y (mod [my,ma,...,m.]).

DEFINITION 7 (Residue modulo m). If x = y (mod m), then y is called a
residue of x modulo m. A set of integers {yi,vy2,...,Yym} is called a complete
residue system modulo m if for each integer x there exists one and only one y; such
that © = y; (mod m).

DEFINITION 8 (Reduced residue system). A reduced residue system modulo m
is a set of integers r; such that (r;,m) =1, r; # r; (mod m) when i # j, and such
that each integer x relatively prime to m is congruent to a certain r; modulo m.

DEFINITION 9 (Euler’s function). The Euler ¢ function is defined by
d(n) =#{0<m <n|(n,m) =1}

THEOREM 21 (Fermat’s Little Theorem). Let p be a prime number and a a
positive integer such that p does not divide a. Then a?~' =1 (mod p). Moreover,
given any integer a, a” = a (mod p).

THEOREM 22 (Euler’s Theorem). Let m € N and a € Z be such that (a,m) = 1.
Then
a®™ =1 (mod m).



