B =it By EENE 2 um RS L

The Art and Science of Java

~ An Introduction to Computer Science

2*5ﬂ+

ﬁ%ﬂﬂ

Eric S. Roberts #

S AR

KFHENAFTESELBAM AT (DR

The Art and Science of Java

An Introduction to Computer Science
. —— = hJ N lull
Java IBEE ZA5RE
HREIMEIE

Eric S. Roberts
Stanford University

English reprint edition copyright © 2009 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA
UNIVERSITY PRESS.

Original English language title from Proprietor’s edition of the Work.

Original English language title: The Art and Science of Java: An Introduction to Computer Science by Eric S.
Roberts, Copyright © 2009

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley,
Inc.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the Special
Administrative Region of Hong Kong, Macao SAR and Taiwan).

A EEIRR B Pearson Education(52E 2 & H MR AE BNFRAUA 1 16 K% B RRAE U ROR AT -

For sale and distribution in the People’s Republic of China exclusively
(except Taiwan, Hong Kong SAR and Macao SAR).
RFHEARELMERERN (FEREPEEE. RIVFINTEHE
PEETHRX) HEXRIT.

AHHEME Pearson Education GEEHE HARKH) HMAHMRE, THREZETFHE.

WRARET A, RILR. FINEIREIE: 010-62782989 13701121933

E B ERRS B (CIP) #3E
Java IB 5 2R SR HHENIE2# 548 = The Art and Science of Java: An Introduction to Computer Science:
Y3/ () BHES (Roberts, E.S.) #. —3EIA. —Jtal: WHHEAFHMAL, 2009.5

CREFIFEPEE EIE 2 EM R GEERERD)
ISBN 978-7-302-19805-5

[.J+ I Z- ILIJAVA S — B sh —mS s — 8 — 2 IV, TP312
oh [A B R CIP Bdfid% 7 (2009) 5 045643 5
RIEEDH: M

HARAIT: EHFRF AR Ho fk: JERUEEREETERE A B
http:/ /www.tup.com.cn i 4%: 100084
£ #l: 010-62770175 H . 010-62786544

BB 5IREMRE: 010-62776969, c-service@tup.tsinghua.edu.cn

B 8 & i%: 010-62772015, zhiliang@tup.tsinghua.edu.cn

W F R
AR = B RUCHRIARRAT

A [EF L

185X 230 ENgk: 38.25

2009 4 5 HH 1 ED e 2009 4E 5 581 IREIRI
1~3000

49.00 JC

KPBUNAFAE LA IEDS BRon. BI0T. 5 v 4 ELE T o) L, 0 S5 T K R AL H RRGREE &R
¥, BERHIE: 010-62770177 #3103 S 025055-01

BT EH R D
o=
R IE B Ok ke ik

R B B

BEN 21 e, RS E LS. B a B S goR E A . Tt
BERXMANAMTES . WA KRERROAL, RS PRANS. S58E, 1
AR TNA SN, LRZFmEER. AiRERSHENEMERRE, AT
IR BOH (KSR, BOH R IEAE R D (R B I w KR IR S R R

TR RN 1996 SFETT4R, 5 EANE A HRA T &1F, EIHRT “R%EHHEH
HENE GEEO” RGBS, 22 ENEF MW BA 21 L, &
A X B S 20 B RIS IR, fECA R L, BP9 KREENA, %
REBTFARRE, —WBRAEIE A kT R Pdd T R E B AR R AE T HABE
[Sh 22 S B B 2 A, AT “ KA RN E A& LB RF GEERRD”, b
SRIEE o IRV B8 K R A R B AR AN L e Al] EREENE R,
FARBW) FATHERE AN SHLEE L Eob, DRBAHE “ KRB BE A4
M ARY] GEEO” MAEL, HiEA RN AR,

EESP N)T

Dedicated to the memory of Anita Borg (1949-2003)
for her tireless efforts to bring the excitement
of computing to a wider audience.

To the Student

Welcome! By picking up this book, you have taken a step into the world of
computer science—a field of study that has grown from almost nothing half a
century ago to one of the most vibrant and active disciplines of our time.

Over that time, the computer has opened up extraordinary possibilities in almost
every area of human endeavor. Business leaders today are able to manage global
enterprises on an unprecedented scale because computers enable them to transfer
data anywhere in a fraction of a second. Scientists can now solve problems that
were beyond their reach in the days before computers made the necessary
calculations possible. The World Wide Web puts a vast amount of information at
your fingertips and lies at the foundation of a vibrant industry that did not exist a
decade ago. Filmmakers can use computer technology to create animated features
that would have been unthinkable in Walt Disney’s time. Modern computation has
revolutionized many fields, enabling biologists to sequence the human genome,
economists to model international markets, and literary scholars to assess whether
an unattributed Elizabethan manuscript might have been penned by Shakespeare.

Computing is a profoundly empowering technology. The computing industry
continues to grow, with more jobs available today than at the height of the Internet
boom of the 1990s. But the advances we have seen up to now are small compared to
what we will experience in this century. Those of you who are students today will
soon inherit the responsibility of guiding that progress. No matter what field you
choose, understanding how to use computing effectively will be of enormous value.

Like most skills that are worth knowing, learning how computers work and how
to control their enormous power takes time. You will not understand it all at once.
You must start somewhere. Twenty-five centuries ago, the Chinese philosopher
Lao-tzu observed that the longest journey begins with a single step. This book can
be your beginning.

For many of you, however, the first step can be the hardest to take. Many
students find computers overwhelming and imagine that computer science is beyond
their reach. Learning the basics of programming, however, does not require
advanced mathematics or a detailed understanding of electronics. What matters in
programming is whether you can progress from the statement of a problem to its
solution. To do so, you must be able to think logically. You must have the necessary
discipline to express your logic in a form that the computer can understand. Perhaps
most importantly, you must be able to see the task through to its completion without
getting discouraged by difhculties and setbacks. If you stick with the process, you
will discover that reaching‘the solution is so exhilarating that it more than makes up
for any frustrations you encounter along the way.

I wish you a pleasant journey along that road.

Eric Roberts
Stanford University
January 2007

To the Instructor

This text is intended for use in the first programming course in a typical college or
university curriculum. It covers the material in a traditional CS1 course, as defined
in the Curriculum 78 report prepared by the Association for Computing Machinery
(ACM). It also includes the full set of topics specified for the CS101¢ or CS111g
courses in the computer science volume of the more recent Computing Curriculum
2001 report.

The Art and Science of Java uses a similar approach to that of my 1995 textbook,
The Art and Science of C. Each of these texts uses libraries to make programming
less complex and consequently more accessible to the novice. In the C-based
version, those libraries proved to be extremely successful with students, not only at
Stanford, but at many other institutions as well. This book uses the ACM Java
Libraries to achieve the same goals.

In the years since its initial release in 1995, the Java programming language has
become increasingly important as an instructional language, to the point that it is
now something of a standard in introductory computing courses. On the positive
side, Java offers many advantages over earlier teaching languages, primarily by
making it possible for students to write highly interactive programs that capture
their interest and imagination. At the same time, Java is far more sophisticated than
languages that have traditionally filled the role of teaching languages, such as
BASIC and Pascal. The complexity that accompanies Java’s sophistication can be a
significant barrier to both teachers and students as they try to understand the
structure of the language.

To address the problems that introductory instructors encountered using Java, in
2004 the ACM established the Java Task Force and gave it the following charge:

To review the Java language, APIs, and tools from the perspective of
introductory computing education and to develop a stable collection of
pedagogical resources that will make it easier to teach Java to first-year
computing students without having those students overwhelmed by its
complexity.

Over the next two years, the Java Task Force developed a new set of libraries
intended to support the use of Java at the introductory level. After releasing two
preliminary drafts to obtain community feedback, the Java Task Force published its
final report in the summer of 2006. The ACM Java Libraries described in that
report are available on the following web site:

http://jtf.acm.org/

In addition to the ACM Java Libraries themselves, the web site contains a large
collection of demo programs, a tutorial guide, an extensive discussion of the
rationale behind the design of the various packages, and an executive summary that
identifies the following as the greatest strengths of the libraries. The ACM Java
Libraries provide

* A simple object-oriented model for programs. The Program class defined in
the acm.program package offers an easy-to-use model for writing simple
programs. In addition to hiding the static main method, the Program class
and its standard subclasses provide a highly intuitive example of object-
oriented class hierarchies. .

- A model for input and output that treats traditional console I/0O and dialog
1/0 symmetrically. The acm.io package defines the classes T0Console and
I0Dialog that share a common interface for all input/output operations. This
design addresses Java’s lack of a simple input mechanism in a way that
emphasizes the value of interface-based design.

* An extensive library of graphical objects. The acm.graphics package
implements a simple but extremely powerful model for creating graphical
pictures based on the metaphor of a felt board in which students construct
graphical objects of various types and place them on a canvas. This design
emphasizes the use of objects and frees the student from having to respond
explicitly to repaint requests.

e A minimal set of new classes to support development of graphical user
interfaces. The acm.gui package includes a small set of classes to bring
Java’s extensive GUI-development resources within the reach of novice
programmers.

* Backward compatibility for applets. Unlike most Java code today, programs
developed using the ACM Java Libraries can typically be executed as applets
even on older-web browsers. This flexibility makes these libraries an ideal
foundation for web-based teaching tools and lecture demonstrations.

Given the enormous number of classes and methods that are available in Java’s
own libraries, it is inevitable that a book of this sort will leave out some particular
feature of Java. It is impossible to cover everything and still produce a book that is
accessible to the average student. In terms of the choice of topics, this book seeks
to offer a coherent presentation that teaches the fundamentals of computer science
rather than to cover everything there is to know about Java. In many ways, the
guiding principle for the choice of topics in this book comes from the following
observation from Antoine de Saint-Exupéry in his 1942 memoire Pilote de Guerre
(later quoted by Tony Hoare in his 1980 Turing Award lecture):

Perfection is attained, not when there is nothing left to add, but when
there is nothing left to take away.

While this book certainly makes no claims to perfection, it would probably have
been better to leave more topics out than to put more topics in.

Although the book covers topics in an order that has proven successful here at
Stanford, you may want to vary the order of presentation to suit your audience and
the goals of your course. The following notes provide an overview of the chapters
and indicate some of the more important dependencies.

Chapter 1 traces the history of computing and describes the programming
process. The chapter requires no programming per se but provides the contextual
background for the rest of the text.

I have designed Chapter 2 for students with little or no computing background.
This chapter is conceptual in its approach and focuses on developing a holistic
understanding of object-oriented programming rather than on the details of the Java
language. When new students are faced with detailed rules of syntax and structure,
they concentrate on learning the rules instead of the underlying concepts, which are
vastly more important at this stage. If your students already know some
programming, you can probably move quickly through this material.

Chapters 3, 4, and 5 offer relatively traditional introductions to expressions,
statements, and methods so that students understand these basic concepts.

Chapters 6 and 7 then go on to introduce the fundamentals of objects and classes.
Chapter 6 provides the high-level view, focusing on how to use objects and classes
rather than on their underlying structure. Chapter 7 then turns to the low-level
details involved of how objects are represented in memory. Although Chapter 7 is
not absolutely required, students who can picture the internal structure of an object
are much more likely to understand the essential concept of a reference.

The next three chapters introduce particular classes from either Java’s standard
libraries or the ACM packages. Chapter 8 covers the String class, which is
presumably an important topic in any introductory course. Chapter 9 describes the
acm.graphics package in detail, which makes it possible for students to write far
more exciting programs. Parts of the acm.graphics package are included in earlier
chapters, and it is certainly possible to cover only some of the topics in Chapter 9.
Chapter 10 offers a similar overview of event-driven programming. The first
several sections in Chapter 10 focus on mouse and keyboard events; the remaining
sections provide an introduction to graphical user interfaces (GUIs) and the standard
interactor classes from javax.swing. This second part of the chapter is valuable if
you want to have students design GUI-based programs, but it is not necessary to
understand subsequent chapters.

Chapters 11 and 12 address the idea of arrays, but do so from different
perspectives. Chapter 11 introduces both the built-in array type and the ArrayList
utility class from the java.util package. Both of these topics seem essential to
any Java-based introductory course. Chapter 12 focuses on algorithms for searching
and sorting arrays. The chapter also includes a brief discussion of computational
complexity that will help students understand the importance of algorithmic design.

Chapter 13 describes the Java Collections Framework, which is perhaps more
often presented in a second programming course. However, because Java takes care
of so many of the underlying details, it is actually quite reasonable to teach
introductory students how to use these classes, even if they can’t understand their
implementation. The only essential class from the Java Collections Framework is
ArrayList, which has already appeared in Chapter 11.

Chapter 14 includes four important topics that sometimes appear in a first
programming course: recursion, concurrency, networking, and programming
patterns. At Stanford, which is on the quarter system, we teach these topics in the
second course. If you decide to teach recursion in the first course, I strongly
recommend that you do so early enough to allow students time to assimilate the
material. One possibility is to discuss recursive functions immediately after Chapter
5 and recursive algorithms at the end of Chapter 12.

Supplemental Resources

For students

The following items are available to all readers of this book at the Addison-Wesley
web site (http://www.aw.com/cssupport/):

* Source code files for each example program in the book
* Full-color PDF versions of sample runs
* Answers to review questions

For instructors

The following items are available to qualified instructors from Addison-Wesley’s
Instructor Resource Center (http: //www.aw.com/irc/):

* Source code files for each example program in the book

* Full-color PDF versions of sample runs

* Answers to review questions

e Solutions to programming exercises

* Applet-based lecture slides that include animations of the program examples

For adopters of the ACM Java Libraries

The Association for Computing Machinery maintains an extensive web site on the
ACM Java Libraries developed by the Java Task Force (http://jtf.acm.org/).
That site includes the following resources:

* An executive summary outlining the purpose of the ACM Java Libraries
e Downloadable copies of ACM libraries in both source and compiled form
* An extensive demo gallery including source code for the examples

* An introductory tutorial to using the ACM libraries

* A comprehensive discussion of the rationale behind the design

Acknowledgments

Writing a textbook is never the work of a single individual. In putting this book
together, I have been extremely fortunate to have the help of many talented and
dedicated people. I particularly want to thank my colleagues on the ACM Java Task
Force —Kim Bruce, James H. Cross II, Robb Cutler, Scott Grissom, Karl Klee,
Susan Rodger, Fran Trees, Ian Utting, and Frank Yellin—for their hard work on the
project, as well as the National Science Foundation, the ACM Education Board, and
the SIGCSE Special Projects Fund for their financial support. I also want to thank
everyone who responded to the Java Task Force’s call for proposals in 2004: Alyce
Brady, Kim Bruce, Pam Cutter, Ken Lambert, Robert McCartney, Dave Musicant,
Martin Osborne, Nick Parlante, Viera Proulx, Richard Rasala, Juris Reinfelds, Dean
Sanders, Kathryn Sanders, Ruth Ungar, and Andries van Dam. As the design
document for the Java Task Force makes clear, these suggestions were of enormous
value even if the task force did not adopt the designs in their original form.

Here at Stanford, thanks are due to many people. In many ways, the people who
have shaped the book as much as anyone have been my students, who have had to
learn the material from a series of preliminary drafts over the last year and a half.
For one thing, the students in Stanford’s introductory course have certainly risen to
the challenge of using a new approach to the material and have demonstrated
beyond my expectations how much students can accomplish using the ACM Java
Libraries. For another, my students have proven to be vigilant readers of the
various drafts, never hesitating to point out opportunities for improvement. I also
want to thank the entire team of undergraduate teaching assistants, who have had to
explain to students all the concepts I left out of the earlier versions.

[want to express my gratitude to my editor, Michael Hirsch, and the other
members of the team at Addison-Wesley for their support on this book as well as its
predecessor.

As always, the greatest thanks are due to my wife Lauren Rusk, who has again
worked her magic as my developmental editor. Lauren’s expertise has added
considerable clarity and polish to the text. As I said in the preface to my 1995 book,
without her, nothing would ever come out as well as it should.

Contents

1 Introduction 1

A brief history of computing 2

1.2 What is computer science? 4

1.3 A brief tour of computer hardware 5
The CPU 6, Memory 7, Secondary storage 7, Input/output
devices 7, Network 8

1.4 Algorithms 8

1.5 Stages in the programming process 9
Creating and editing programs @, Programming errors and
debugging 12, Software maintenance 13

1.6 Java and the object-oriented paradigm 15
The history of objectoriented programming 15, The Java
programming language 16

1.7 Java and the World Wide Web 17
Summary 21
Review questions 22

2 Programming by Example 23

2.1 The “Hello world” program 24
Comments 25, Imports 26, The main class 26,

2.2 Perspectives on the programming process 28

2.3 A program to add two numbers 30

2.4 Programming idioms and patterns 34

2.5 Classes and objects 36
Class hierarchies 36, The Program class hierarchy 38

2.6 Graphical programs 39
The HelloProgram example revisited 40, Sending messages to
Gobjects 40, The Gobject class hierarchy 43, The GRect
class 44, The oval class 48, The GLine class 49
Summary 51
Review questions 52
Programming exercises 53

3 Expressions 57
3.1 Primitive data types 59
3.2 Constants and variables 61

Constants 61, Variables 62, Declarations 63, Named
constants 64

3.3

3.4

3.5

3.6

Operators and operands 65

Combining integers and floating-point numbers 66, Integer
division and the remainder operator 67, Precedence 68,
Applying rules of precedence 70, Type conversion 71
Assignment statements 73

Shorthand assignment operators 76, The increment and
decrement operators 77

Boolean expressions 77

Relational operators 78, logical operators 78, Shortcircuit
evaluation 81, Flags 82, An example of Boolean
calculation 82

Designing for change 83

The importance of readability 83, Using named constants to
support program maintenance 84, Using named constants to
support program development 85

Summary 88

Review questions 89

Programming exercises 91

4 Statement Forms 95

4.1

4.2

4.3

4.4
4.5

4.6

Statement types in Java 96

Simple statements 96, Compound statements 98, Control
statements 98

Control statements and problem solving 99

Generalizing the Add21ntegers Frogrom 100, The repeatN-
times pattern 101, The read-until-sentinel pattern 102

The if statement 105

Single-line if statements 107, Multiline if statements 107, The
if-else statement 107, Cascading if statements 107, The 2:
operator 108)

The switch statement 110

The while statement 112
Using the while loop 113, Infinite loops 114, Solving the loop-
and-a-half problem 115

The for statement 118
The relationship between for and while 120, Using for with
floating-point J;TO 120, Nested for statements 121, Simple
graphical animation 122

Summary 126
Review questions 126
Programming exercises 127

xi

xii

5 Methods 133

51 A q:ick overview of methods 134
Methods as mechanisms for hiding complexity 135, Methods as
tools for programmers rather than users 135, Method calls as
expressions 136, Method calls as messages 137

5.2 Writing your own methods 138
The format of a method 139, The return statlement 139,
Methods involving infernal control structures 141, Methods that
return nonnumeric values 142, Predicate methods 144

5.3 Mechanics of the method-calling process 147
Parameter passing 148, Calling methods from within other
methods 152

5.4 Decomposition 158
Stepwise refinement 159, Specifying parameters 161,
Designing from the top down 163, looking for common
features 164, Completing the decomposition 165

5.5 Algorithmic methods 166
The “brute force” approach 166, Euclid’s algorithm 168,
Defending the correctness of Euclid’s algorithm 168, Comparing
the efficiency of the two algorithms 170
Summary 170
Review questions 171
Programming exercises 172

6 Objects and Classes 177

6.1 Usin(? the RandomGenerator class 178
Pseudorandom numbers 179, Using the RandomGenerator
class 180, The role of the random number seed 183

6.2 The javadoc documentation system 185

6.3 Defining your own classes 188
The structure of a class definifion 188, Controlling the visibility of
entries 189, Encapsulation 189

6.4 Representing student information 190
Declaring instance variables 190, Complefing the class
definition 191, Writing javadoc comments 194, Writing the
constructor 194, Getters and setters 196, The tostring
method 196, Defining named constants in a class 197, Using
the student class 198 _

6.5 Rational numbers 199

6.6 Extending existing classes 204

Creating a class to represent filled rectangles 204, Rules for
inheriteg constructors 208, Rules for inherited methods 209

Summary 211
Review questions 213
Programming exercises 214

7 Objects and Memory 221

7.1

7.2

7.3

7.4

The structure of memory 222

Bits, bytes, and words 222, Binog and hexadecimal
representations 223, Memory addresses 225

The allocation of memory to variables 226

Memory diagrams for the Rational class 227, Garbage
collection 232

Primitive types versus objects 232 ,
Parameter passing 234, Wrapper classes 236, Boxing and
unboxing 238

Linking objects together 240

Message passing in linked structures: The beacons of
Gondor 240, The infernal representation of linked
structures 243

Summary 244
Review questions 245
Programming exercises 247

8 Strings and Characters . 249

8.1

8.2

8.3

8.4

8.5

The principle of enumeration 250

Representing enumerated types inside the machine 251,
Representing enumerated types as integers 252, Defining new
enumerated types 253

Characters 254

The data type char 254, The ASCIl and Unicode coding
systems 254, Character constants 257, Important properties of
the Unicode representation 257, Special characters 258,
Character arithmetic 259, Useful methods in the character
class 261, Control statements involving characters 263

Strings as an abstract idea 263
Holistic and reductionist views of strings 264, The notion of an
abstract type 264 .

Using the methods in the string class 265

Determining the length of a string 265, Selecting characters from
a string 267, Concatenation 267, Extracting parts of a

sting 269, Comparing one string with another 270, Searching
within a sting 271, Case conversion 273

A case study in string processing 273

Applying topdown design 273, Implementing
translateLine 275, Taking spaces and punctuation into
account 276, The stringTokenizer class 278, Completing
the implementation 280

Summary 284

Review questions 284

Programming exercises 286

xiv

9 Object-oriented Graphics 295

9.1
9.2

2.3

9.4

The acm.graphics model 296

Structure of the acm.graphics package 297

The Gcanvas class 297, Further details about the color

class 300, The GPoint, GDimension, and GRectangle

classes 301, The eMath class 302, The Gobject class and its
subclasses 303

Using the shape classes 306

The GLabel class 306, The GRect class and its subclasses
(cRoundRect and G3pRect) 311, The goval class 311, The
GLine class 312, The @arc class 313, The GImage class 316,
The @Polygon class 321

Creating compound objects 328

A simple Gcompound example 328, The GCompound coordinate
system 331, Obiject decomposition using GCompound 331,
Nesting GCompound objects 336

Summary 338
Review questions 339
Programming exercises 340

10 Event-driven Programs 349

10.1
10.2
10.3

10.4
10.5
10.6

10.7

10.8

The Java event model 350
A simple event-driven program 351

Responding to mouse events 354
The MouseListener and MouseMotionListener interfaces 355,
Overriding listener methods 355, A line-drawing program 356,
Dragging obijects on the canvas 358

Responding to keyboard events 360
Creating a simple GUI 362

The Swing interactor hierarchy 365

The gButton class 365, The gToggleButton class 367, The
JCheckBox class 368, The JrRadioButton and ButtonGroup
classes 369, The gslider and Jrabel classes 371, The
JcomboBox class 372, The JTextField, IntField, and
DoubleField classes 374

Managing component layout 380

The Java windowing hierarchy 380, layout managers 382, The
BorderLayout manager 383, The FlowLayout manager 385,
The Gridrayout manager 386, The inadequacy of the standard
layout managers 387

Using the TableLayout class 388

Comparing GridLayout and TableLayout 388, Using
TableLayout fo create a femperature converter 389, Specifying

constraints 390, Using TableLayout fo create a simple
calculator 390

Summary 399
Review questions 401
Programming exercises 402

11 Arrays and Arraylists 409

1.1

11.2
11.3
11.4
11.5
11.6

11.8

Introduction to arrays 410

Array declaration 411, Array selection 412, An example of a
simple aray 413, Changing the index range 414, Arrays of
objects 415, Using arrays in graphical programs 415, A
digression on the ++ and -- operators 417

Internal representation of arrays 419

Passing arrays as parameters 421

Using arrays for tabulation 427

Initialization of arrays 428

Multidimensional arrays 430
Passing multidimensional arrays to methods 431, Initializing
multidimensional arrays 432

Image processing 432

Representation of images 433, Using the GImage class to
manipulate images 433, Bit monipu?otion 434, Using bit
operations fo isolate components of a pixel 437, Creating a
grayscale image 438, Smoothing an image through
averaging 439, Hiding complexity 439

The ArrayList class 442
Summary 448

Review questions 449
Programming exercises 450

12 Searching and Sorting 461

12.1

12.2

12.3

Searching 462

Searching in an integer array 462, Searching a table 463,
Binary search 466, The relative efficiency of the search
algorithms 468

Sorting 470

Sorting an integer array 470, The selection sort algorithm 471,
Evaluating the efficiency of selection sort 473, Measuring the
running time of a program 475, Analyzing the selection sort
Olgorit%m 476, The radix sort algorithm 478

Assessing algorithmic efficiency 481
Big-O notation 481, Standard simplifications of bigfO 482, The
computational complexity of selection sort 482, Predicting

