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Dedicated to the memory of Anita Borg (1949-2003)
for her tireless efforts to bring the excitement
of computing to a wider audience.



To the Student

Welcome! By picking up this book, you have taken a step into the world of
computer science—a field of study that has grown from almost nothing half a
century ago to one of the most vibrant and active disciplines of our time.

Over that time, the computer has opened up extraordinary possibilities in almost
every area of human endeavor. Business leaders today are able to manage global
enterprises on an unprecedented scale because computers enable them to transfer
data anywhere in a fraction of a second. Scientists can now solve problems that
were beyond their reach in the days before computers made the necessary
calculations possible. The World Wide Web puts a vast amount of information at
your fingertips and lies at the foundation of a vibrant industry that did not exist a
decade ago. Filmmakers can use computer technology to create animated features
that would have been unthinkable in Walt Disney’s time. Modern computation has
revolutionized many fields, enabling biologists to sequence the human genome,
economists to model international markets, and literary scholars to assess whether
an unattributed Elizabethan manuscript might have been penned by Shakespeare.

Computing is a profoundly empowering technology. The computing industry
continues to grow, with more jobs available today than at the height of the Internet
boom of the 1990s. But the advances we have seen up to now are small compared to
what we will experience in this century. Those of you who are students today will
soon inherit the responsibility of guiding that progress. No matter what field you
choose, understanding how to use computing effectively will be of enormous value.

Like most skills that are worth knowing, learning how computers work and how
to control their enormous power takes time. You will not understand it all at once.
You must start somewhere. Twenty-five centuries ago, the Chinese philosopher
Lao-tzu observed that the longest journey begins with a single step. This book can
be your beginning.

For many of you, however, the first step can be the hardest to take. Many
students find computers overwhelming and imagine that computer science is beyond
their reach. Learning the basics of programming, however, does not require
advanced mathematics or a detailed understanding of electronics. What matters in
programming is whether you can progress from the statement of a problem to its
solution. To do so, you must be able to think logically. You must have the necessary
discipline to express your logic in a form that the computer can understand. Perhaps
most importantly, you must be able to see the task through to its completion without
getting discouraged by difhculties and setbacks. If you stick with the process, you
will discover that reaching‘the solution is so exhilarating that it more than makes up
for any frustrations you encounter along the way.

I wish you a pleasant journey along that road.

Eric Roberts
Stanford University
January 2007



To the Instructor

This text is intended for use in the first programming course in a typical college or
university curriculum. It covers the material in a traditional CS1 course, as defined
in the Curriculum 78 report prepared by the Association for Computing Machinery
(ACM). It also includes the full set of topics specified for the CS101¢ or CS111g
courses in the computer science volume of the more recent Computing Curriculum
2001 report.

The Art and Science of Java uses a similar approach to that of my 1995 textbook,
The Art and Science of C. Each of these texts uses libraries to make programming
less complex and consequently more accessible to the novice. In the C-based
version, those libraries proved to be extremely successful with students, not only at
Stanford, but at many other institutions as well. This book uses the ACM Java
Libraries to achieve the same goals.

In the years since its initial release in 1995, the Java programming language has
become increasingly important as an instructional language, to the point that it is
now something of a standard in introductory computing courses. On the positive
side, Java offers many advantages over earlier teaching languages, primarily by
making it possible for students to write highly interactive programs that capture
their interest and imagination. At the same time, Java is far more sophisticated than
languages that have traditionally filled the role of teaching languages, such as
BASIC and Pascal. The complexity that accompanies Java’s sophistication can be a
significant barrier to both teachers and students as they try to understand the
structure of the language.

To address the problems that introductory instructors encountered using Java, in
2004 the ACM established the Java Task Force and gave it the following charge:

To review the Java language, APIs, and tools from the perspective of
introductory computing education and to develop a stable collection of
pedagogical resources that will make it easier to teach Java to first-year
computing students without having those students overwhelmed by its
complexity.

Over the next two years, the Java Task Force developed a new set of libraries
intended to support the use of Java at the introductory level. After releasing two
preliminary drafts to obtain community feedback, the Java Task Force published its
final report in the summer of 2006. The ACM Java Libraries described in that
report are available on the following web site:

http://jtf.acm.org/

In addition to the ACM Java Libraries themselves, the web site contains a large
collection of demo programs, a tutorial guide, an extensive discussion of the
rationale behind the design of the various packages, and an executive summary that
identifies the following as the greatest strengths of the libraries. The ACM Java
Libraries provide



* A simple object-oriented model for programs. The Program class defined in
the acm.program package offers an easy-to-use model for writing simple
programs. In addition to hiding the static main method, the Program class
and its standard subclasses provide a highly intuitive example of object-
oriented class hierarchies. .

- A model for input and output that treats traditional console I/0O and dialog
1/0 symmetrically. The acm.io package defines the classes T0Console and
I0Dialog that share a common interface for all input/output operations. This
design addresses Java’s lack of a simple input mechanism in a way that
emphasizes the value of interface-based design.

* An extensive library of graphical objects. The acm.graphics package
implements a simple but extremely powerful model for creating graphical
pictures based on the metaphor of a felt board in which students construct
graphical objects of various types and place them on a canvas. This design
emphasizes the use of objects and frees the student from having to respond
explicitly to repaint requests.

e A minimal set of new classes to support development of graphical user
interfaces. The acm.gui package includes a small set of classes to bring
Java’s extensive GUI-development resources within the reach of novice
programmers.

* Backward compatibility for applets. Unlike most Java code today, programs
developed using the ACM Java Libraries can typically be executed as applets
even on older-web browsers. This flexibility makes these libraries an ideal
foundation for web-based teaching tools and lecture demonstrations.

Given the enormous number of classes and methods that are available in Java’s
own libraries, it is inevitable that a book of this sort will leave out some particular
feature of Java. It is impossible to cover everything and still produce a book that is
accessible to the average student. In terms of the choice of topics, this book seeks
to offer a coherent presentation that teaches the fundamentals of computer science
rather than to cover everything there is to know about Java. In many ways, the
guiding principle for the choice of topics in this book comes from the following
observation from Antoine de Saint-Exupéry in his 1942 memoire Pilote de Guerre
(later quoted by Tony Hoare in his 1980 Turing Award lecture):

Perfection is attained, not when there is nothing left to add, but when
there is nothing left to take away.

While this book certainly makes no claims to perfection, it would probably have
been better to leave more topics out than to put more topics in.

Although the book covers topics in an order that has proven successful here at
Stanford, you may want to vary the order of presentation to suit your audience and
the goals of your course. The following notes provide an overview of the chapters
and indicate some of the more important dependencies.

Chapter 1 traces the history of computing and describes the programming
process. The chapter requires no programming per se but provides the contextual
background for the rest of the text.



I have designed Chapter 2 for students with little or no computing background.
This chapter is conceptual in its approach and focuses on developing a holistic
understanding of object-oriented programming rather than on the details of the Java
language. When new students are faced with detailed rules of syntax and structure,
they concentrate on learning the rules instead of the underlying concepts, which are
vastly more important at this stage. If your students already know some
programming, you can probably move quickly through this material.

Chapters 3, 4, and 5 offer relatively traditional introductions to expressions,
statements, and methods so that students understand these basic concepts.

Chapters 6 and 7 then go on to introduce the fundamentals of objects and classes.
Chapter 6 provides the high-level view, focusing on how to use objects and classes
rather than on their underlying structure. Chapter 7 then turns to the low-level
details involved of how objects are represented in memory. Although Chapter 7 is
not absolutely required, students who can picture the internal structure of an object
are much more likely to understand the essential concept of a reference.

The next three chapters introduce particular classes from either Java’s standard
libraries or the ACM packages. Chapter 8 covers the String class, which is
presumably an important topic in any introductory course. Chapter 9 describes the
acm.graphics package in detail, which makes it possible for students to write far
more exciting programs. Parts of the acm.graphics package are included in earlier
chapters, and it is certainly possible to cover only some of the topics in Chapter 9.
Chapter 10 offers a similar overview of event-driven programming. The first
several sections in Chapter 10 focus on mouse and keyboard events; the remaining
sections provide an introduction to graphical user interfaces (GUIs) and the standard
interactor classes from javax.swing. This second part of the chapter is valuable if
you want to have students design GUI-based programs, but it is not necessary to
understand subsequent chapters.

Chapters 11 and 12 address the idea of arrays, but do so from different
perspectives. Chapter 11 introduces both the built-in array type and the ArrayList
utility class from the java.util package. Both of these topics seem essential to
any Java-based introductory course. Chapter 12 focuses on algorithms for searching
and sorting arrays. The chapter also includes a brief discussion of computational
complexity that will help students understand the importance of algorithmic design.

Chapter 13 describes the Java Collections Framework, which is perhaps more
often presented in a second programming course. However, because Java takes care
of so many of the underlying details, it is actually quite reasonable to teach
introductory students how to use these classes, even if they can’t understand their
implementation. The only essential class from the Java Collections Framework is
ArrayList, which has already appeared in Chapter 11.

Chapter 14 includes four important topics that sometimes appear in a first
programming course: recursion, concurrency, networking, and programming
patterns. At Stanford, which is on the quarter system, we teach these topics in the
second course. If you decide to teach recursion in the first course, I strongly
recommend that you do so early enough to allow students time to assimilate the
material. One possibility is to discuss recursive functions immediately after Chapter
5 and recursive algorithms at the end of Chapter 12.



Supplemental Resources

For students

The following items are available to all readers of this book at the Addison-Wesley
web site (http://www.aw.com/cssupport/):

* Source code files for each example program in the book
* Full-color PDF versions of sample runs
* Answers to review questions

For instructors

The following items are available to qualified instructors from Addison-Wesley’s
Instructor Resource Center (http: //www.aw.com/irc/):

* Source code files for each example program in the book

* Full-color PDF versions of sample runs

* Answers to review questions

e Solutions to programming exercises

* Applet-based lecture slides that include animations of the program examples

For adopters of the ACM Java Libraries

The Association for Computing Machinery maintains an extensive web site on the
ACM Java Libraries developed by the Java Task Force (http://jtf.acm.org/).
That site includes the following resources:

* An executive summary outlining the purpose of the ACM Java Libraries
e Downloadable copies of ACM libraries in both source and compiled form
* An extensive demo gallery including source code for the examples

* An introductory tutorial to using the ACM libraries

* A comprehensive discussion of the rationale behind the design
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