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Preface — please read!

The most important chapter in this book is Chapter E: Ezercises. 1 have
left the interesting things for you to do. You can start now on the ‘EG’
exercises, but see ‘More about exercises’ later in this Preface.

The book, which is essentially the set of lecture notes for a third-year
undergraduate course at Cambridge, is as lively an introduction as I can
manage to the rigorous theory of probability. Since much of the book is
devoted to martingales, it is bound to become very lively: look at those
Exercises on Chapter 10! But, of course, there is that initial plod through
the measure-theoretic foundations. It must be said however that measure
theory, that most arid of subjects when done for its own sake, becomes
amazingly more alive when used in probability, not only because it is then
applied, but also because it is immensely enriched.

You cannot avoid measure theory: an event in probability is a measur-
able set, a random variable is a measurable function on the sample space,
the ezpectation of a random variable is its integral with respect to the prob-
ability measure; and so on. To be sure, one can take some central results
from measure theory as axiomatic in the main text, giving careful proofs in
appendices; and indeed that is exactly what I have done.

Measure theory for its own sake is based on the fundamental addition
rule for measures. Probability theory supplements that with the multipli-
cation rule which describes independence; and things are already looking
up. But what really enriches and enlivens things is that we deal with lots
of o-algebras, not just the one o-algebra whlch is the concern of measure
theory.

In planning this book, I decided for every topic what things I considered
just a bit too advanced, and, often with sadness, I have ruthlessly omitted
them.

For a more thorough training in many of the topics covered here, see
Billingsley (1979), Chow and Teicher (1978), Chung (1968), Kingman and
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xii Preface

Taylor (1966), Laha and Rohatgi (1979), and Neveu (1965). As regards
measure theory, I learnt it from Dunford and Schwartz (1958) and Halmos
(1959). After reading this book, you must read the still-magnificent Breiman
(1968), and, for an excellent indication of what can be done with discrete
martingales, Hall and Heyde (1980).

Of course, intuition is much more important than knowledge of measure
theory, and you should take every opportunity to sharpen your intuition.
There is no better whetstone for this than Aldous (1989), though it is a very
demanding book. For appreciating the scope of probability and for learning
how to think about it, Karlin and Taylor (1981), Grimmett and Stirzaker
(1982), Hall (1988), and Grimmett’s recent superb book, Grimmett (1989),
on percolation are strongly recommended.

More about ezercises. In compiling Chapter E, which consists exactly of
the homework sheet I give to the Cambridge students, I have taken into
account the fact that this book, like any other mathematics book, implicitly
contains a vast number of other exercises, many of which are easier than
those in Chapter E. I refer of course to the exercises you create by reading
the statement of a result, and then trying to prove it for yourself, before
you read the given proof. One other point about exercises: you will, for
example, surely forgive my using expectation E in Exercises on Chapter 4
before E is treated with full rigour in Chapter 6.

Acknowledgements. My first thanks must go to the students who have
endured the course on which the book is based and whose quality has made
me try hard to make it worthy of them; and to those, especially David
Kendall, who had developed the course before it became my privilege to
teach it. My thanks to David Tranah and other staff of CUP for their help in
converting the course into this book. Next, I must thank Ben Garling, James
Norris and Chris Rogers without whom the book would have contained more
errors and obscurities. (The many faults which surely remain in it are my
responsibility.) Helen Rutherford and I typed part of the book, but the vast
majority of it was typed by Sarah Shea-Simonds in a virtuoso performance
worthy of Horowitz. My thanks to Helen and, most especially, to Sarah.
Special thanks to my wife, Sheila, too, for all her help.

But my best thanks — and yours if you derive any benefit from the book
— must go to three people whose names appear in capitals in the Index: J.L.
Doob, A.N. Kolmogorov and P. Lévy: without them, there wouldn’t have
been much to write about, as Doob (1953) splendidly confirms.

Statistical Laboratory, David Williams
Cambridge October 1990



A Question of Terminology

Random variables: functions or equivalence classes?

At the level of this book, the theory would be more ‘elegant’ if we regarded
a random variable as an equivalence class of measurable functions on the
sample space, two functions belonging to the same equivalence class if and
only if they are equal almost everywhere. Then the conditional-expectation
map

X — E(X|G)

would be a truly well-defined contraction map from L?(Q2, F,P) to L?(Q,G,P)
for p > 1; and we would not have to keep mentioning versions (representa-
tives of equivalence classes) and would be able to avoid the endless ‘almost
surely’ qualifications.

I have however chosen the ‘inelegant’ route: firstly, I prefer to ‘work
with functions, and confess to preferring -

4+5=2mod7 to  [4r +[5} = 2]

But there is a substantive reason. I hope that this book will tempt you to
progress to the much more interesting, and more important, theory where
the parameter set of our process is uncountable (e.g. it may be the time-
parameter set [0,00)). There, the equivalence-class formulation just will
not work: the ‘cleverness’ of introducing quotient spaces loses the subtlety
which is essential even for formulating the fundamental results on existence
of continuous modifications, etc., unless one performs contortions which are
hardly elegant. Even if these contortions allow one to formulate results, one
would still have to use genuine functions to prove them; so where does the
reality lie?!
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A Guide to Notation

» signifies something important, »» something very important, and »»»
the Martingale Convergence Theorem.

I use ‘:=’ to signify ‘is defined to equal’. This Pascal notation is particularly
convenient because it can also be used in the reversed sense.

I use analysts’ (as opposed to category theorists’) conventions:
> N:={1,2,3,...} € {0,1,2,...} =: Z+.

Everyone is agreed that R+ := [0, 00).
For a set B contained in some universal set S, Iz denotes the indicator
function of B: thatis Iz : § — {0,1} and

. [1 ifs€B,
Is(s): 0 otherwise.

For a,b € R,
a A b := min(a, b), aV b := max(a,b).

CF:characteristic function; DF: distribution function; pdf: probability den-
sity function.

o-algebra, o(C) (1.1); o(Y, : v € C) (3.8, 3.13). x-system (1.6); d-system
(A1.2).

a.e.: almost everywhere (1.5)
a.8. almost surely (2.4)
bX: the space of bounded X-measurable functions (3.1)

xiv



B(S):
CeX:
dA\/dy:
dQ/dP:
E(X):
E(X; F):
E(X|9):
(En,ev):
(En,i.0.):
fx:

fxy:
fxv:
Fx:

lim inf:

lim sup:

z =T limz,:

log:
Lx,Ax:
LrP, LP:
Leb:
mX:
MT:
(M):
p(f):
u(f; A):
pXx:

XT.

A Guide to Notation xv

the Borel o-algebraon S, B :=B(R) (1.2)
discrete stochastic integral (10.6)
Radon-Nikodym derivative (5.14)
Likelihood Ratio (14.13)

expectation E(X) := [ X(w)P(dw) of X (6.3)
Jp XdP (6.3)

conditional expectation (9.3)

liminf E,, (2.8)

limsup E,, (2.6)

probability density function (pdf) of X (6.12).
joint pdf (8.3)

conditional pdf (9.6)

distribution function of X (3.9)

for seté, (2.8)

for sets, (2.6)

zp T z in that 2, < 2,41 (Vn) and z,, — z.
natural (base €) logarithm

law of X (3.9)

Lebesgue spaces (6.7, 6.13)

Lebesgue measure (1.8)

space of L-measurable functions (3.1)
process M stopped at time T (10.9)
angle-brackets process (12.12)

integral of f with respect to u (5.0, 5.2)

J4 fdu (5.0, 5.2)

CF of X (Chapter 16)

pdf of standard normal N(0,1) distribution
DF of N(0,1) distribution

X stopped at time T (10.9)
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Chapter 0
A Branching-Process Example

(This Chapter is not essential for the remainder of the book. You can start
with Chapter 1 if you wish.)

0.0. Ihtroductory remarks:

The purpose of this chapter is threefold: to take something which is probably
well known to you from books such as the immortal Feller (1957) or Ross
(1976), so that you start on familiar ground; te make you start to think
about some of the problems involved in making the elementary treatment
into rigorous mathematics; and to indicate what new results appear if one
applies the somewhat more advanced theory developed in this book. We
stick to one example: a branching process. This is rich enough to show that
the theory has some substance. '

0.1. Typical number of children, X

In our model, the number of children of a typical animal (see Notes below
for some interpretations of ‘child’ and ‘animal’) is a random variable X with
values in Z+. We assume that

P(X =d) >0.

We define the generating funct'ion f of X as the map f : [0,1] — [0,1],
where

£®) =E(@%) = 3 6*P(X = k).

kez+

Standard theorems on power series imply that, for 6 € [0,1),
F1(6) = E(X6X1) =) k6*"'P(X = k)

and
pi=EX) = f'(1)=Y_kP(X =Fk) < oo.

1



2 Chapter 0: A Branching-Process Ezample (0.1)..

Of course, f'(1) is here interpreted as

. f@)—f(1) .. 1-—£(6)
T slimT

since f(1) =1. We assume that

B < 00.

Notes. The first application of branching-process theory was to the question
of survival of family names; and in that context, animal = man, and child
= son.

In another context, ‘animal’ can be ‘neutron’, and ‘child’ of that neu-
tron will signify a neutron released if and when the parent neutron crashes
into a nucleus. Whether or not the associated branching process is super-
critical can be a matter of real importance.

We can often find branching processes embedded in richer structures
and can then use the results of this chapter to start the study of more
interesting things.

For superb accounts of branching processes, see Athreya and Ney (1972),
Harris (1963), Kendall (1966, 1975).

0.2. Size of n't generation, Z,
To be a bit formal: suppose that we are given a doubly infinite sequence
(a) {X,(."') rm,r € N}

of independent identically distributed random variables (IID RVs), each
with the same distribution as X:

P(X(™ = k)=P(X =k).

The idea is that for n € Z+ and r € N, the variable X{"*+1 represents the
number of children (who will be in the (n+ 1)t generation) of the r** animal
(if there is one) in the n'® generation. The fundamental rule therefore is
that if Z,, signifies the size of the nth generation, then

(b) Zugr = X" 4o XD,

We assume that Zy = 1, so that (b) gives a full recursive definition of
the sequence (Z, : m € Z+) from the sequence (a). Our first task is



