§ﬁ Series in Information and Computational Science 4 0O

Superconvergence Analysis
and a Posteriori Error Estimation
in Finite Element Methods

Ningning Yan

(H IR TERBIC S BT B 02 22 1 1)

P SCIENCE PRESS
4 SCIENCE PRESS USA Inc.




Ningning Yan

Superconvergence Analysis
and a Posteriori Error Estimation
in Finite Element Methods

(7 RGBS BT S5 B iR 2 Al i)

L]} SCIENCE PRESS
A Beijing



Responsible Editor: Fan Qingkui

Copyright© 2008 by Science Press
Published by Science Press

16 Donghuangchenggen North Street
Beijing 100717, China

Printed in Beijing

All rights reserved. No part of this publication may be re-
produced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written permission
of the copyright owner.

ISBN 978-7-03-021299-3 (Beijing)




Preface to the Series
in Information and Computational Science

Since the 1970s, Science Press has published more than thirty volumes in its se-
ries Monographs in Computational Methods. This series was established and led by
the late academician, Feng Kang, the founding director of the Computing Center of
the Chinese Academy of Sciences. The monograph series has provided timely infor-
mation of the frontier directions and latest research results in computational mathe-
matics. It has had great impact on young scientists and the entire research community,
and has played a very important role in the development of computational mathema-
tics in China.

To cope with these new scientific developments, the Ministry of Education of
the People’s Republic of China in 1998 combined several subjects, such as computa-
tional mathematics, numerical algorithms, information science, and operations re-
search and optimal control, into a new discipline called Information and Computa-
tional Science. As a result, Science Press also reorganized the editorial board of the
monograph series and changed its name to Series in Information and Computational
Science. The first editorial board meeting was held in Beijing in September 2004, and
it discussed the new objectives, and the directions and contents of the new monograph
series.

The aim of the new series is to present the state of the art in Information and
Computational Science to senior undergraduate and graduate students, as well as to
scientists working in these fields. Hence, the series will provide concrete and system-
atic expositions of the advances in information and computational science, encom-
passing also related interdisciplinary developments.

I would like to thank the previous editorial board members and assistants, and all
the mathematicians who have contributed significantly to the monograph series on
Computational Methods. As a result of their contributions the monograph series
achieved an outstanding reputation in the community. I sincerely wish that we will
extend this support to the new Series in Information and Computational Science, so
that the new series can equally enhance the scientific development in information and
computational science in this century.

Shi Zhongci
2005.7
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It is well known that the finite element method plays an important role in scientific and
engineering computing. The high performance finite element methods based on supercon-
vergence analysis and a posteriori error estimates aim at improving the accuracy and the
efficiency of the finite element methods. As for the importance and usefulness of these
numerical methods for solving partial differential equations, there have been extensive
studies on superconvergence analysis and a posteriori error estimates, and the literature on
this aspect is huge.

Our purpose in this book is to give an essentially self-contained presentation of the
mathematical theory underlying the global superconvergence analysis and the recovery
type a posteriori error estimates. Since, as mentioned in the beginning, the literature and
research on superconvergence and a posteriori error estimation are huge, it is impossible
to include all relevant material in this book. This book tries to summarize most of the
research results on global superconvergence analysis completed by the author and her
colleagues, especially by Professor Q. Lin’s group. Instead of using the Green function
theory as the theoretical basis as in most other earlier books on superconvergence, our
global superconvergence analysis is based on the so-called integral identity technique.
For a posteriori error estimates, this book focuses on the recovery type a posteriori error
estimate, which is more close to the superconvergence analysis in its theoretical analysis.
The emphases and selection of the topics reflects our (author and colleagues) involvement
in the field over the past 15 years.

The following is the outline of the contents of this book:

In Chapter 1, we focus on discussing a simple model problem (Poisson equation) and
a simple finite element space (bilinear conforming finite elements on rectangular meshes).
For the simple model problem and the simple finite element space, we explain our basic
framework of global superconvergence analysis. These basic idea and technique will be
used to deal with much more complicated problems and finite element spaces in other
chapters. The analysis in this chapter is very simple and easy to understand. The reader
can quickly acquire a good understanding of how to analyze the global superconvergence
by using the integral identity technique.

In the following two chapters, we extended the basic theory presented in Chapter 1 to
the more complicated problems and finite element spaces. In Chapter 2, we provide the
integral identities for various finite element spaces, including conforming rectangular finite
elements, nonconforming finite elements, mixed finite elements, - - -. Using the integral
identities provided in Chapter 2, we present the superconvergence analysis in Chapter 3.
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The superclose properties are proved for elliptic equations, parabolic equations, hyperbolic
equations, integral equations, integral-differential equations and some nonlinear problems.
It is shown that using the integral identity technique, we can obtain the improved error
estimate (superclose or improved optimal error estimate) for various partial differential
equations (not limited on elliptic equations).

In Chapter 4, we furthermore discuss more high accuracy finite element algorithms
(extrapolation, defect correction, local superconvergence, ultraconvergence, and so on)
based on the integral identities provided in Chapter 2. The numerical examples demon-
strating our theoretical results in Chapter 3 and 4 are provided. The reader will see that
the integral identity technique is powerful not only for superconvergence analysis, but also
for extrapolation, defect correction, and so on. Moreover, combining the integral identity
technique and Green function theory, remarkable results on ultraconvergence and local
superconvergence can be obtained.

Chapter 5 is devoted to introducing a posteriori error estimates. Here, we concentrate
on the recovery type a posteriori error estimate. It is because the theoretical analysis of the
recovery type a posteriori error estimate is more closely related to the superconvergence
analysis which is the principal subject of this book.

This book is intended for postgraduate and graduate students, university teachers, sci-
entists and engineers, who study or are engaged in computational mathematics, compu-
tational mechanics, applied mathematics, scientific and engineering computation or other
related special fields. A desirable mathematical background for reading this book includes
the basic knowledge of partial differential equations, functional analysis, numerical PDE,
including Sobolev spaces and finite element theory. But because this book does not use
the very deep mathematical theory, it also can be understood and used by students and
engineers who are only familiar with calculus.

The most basic material in this book is taken from another, earlier Chinese book en-
titled Structure and Analysis of Efficient Finite Element Methods, written by Professor Q.
Lin and myself in 1996. I would like to express my special gratitude to Professor Q. Lin
for his great help and support of my research, especially my work for this book. I also
would like to address my thanks to my teachers or colleagues Chuanmiao Chen, Liu Du,
Aixiang Huang, Hongci Huang, Yunqing Huang, Jichun Li, Kaitai Li, Ruo Li, Zicai Li,
Huipo Liu, Mingjun Liu, Wenbin Liu, Ping Luo, Jianhua Pan, Dongyang Shi, Xuecheng
Tai, Junping Wang, Reifeng Xie, Jinchao Xu, Shuhua Zhang, Zhimin Zhang, Aihui Zhou,
Junming Zhou, Qiding Zhu, - --. They provided a lot of material, suggestions and sup-
port for this book. Moreover, I would like to thank Professor H. Brunner and many other
friends, who helped me to improve the English of this book, and I also would like to ad-
dress my thanks to Ms. L. Li and Dr. H. Liu for typing some material and creating the
pictures for this book. Furthermore, I would like to thank Prof. Tang Tao, who encouraged
me to write this book and gave me a lot of helpful suggestions.

Writing this book has been supported by National Natural Science Foundation of China
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(No. 60474027 and 10771211) and the National Basic Research Program under the Grant
2005CB321701.

I welcome comments and corrections to the book and can be reached at
ynne@amss.ac.cn.

Ningning Yan
Academy of Mathematics and Systems Science, CAS, China
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Chapter

Basic framework

In this chapter, the general principle of the superconvergence analysis will be provided. In
order to explain the framework of the superconvergence analysis clearly, we concentrate
our discussion in this chapter on a simple model problem (Poisson equation) and a simple
finite element space (bilinear elements on the rectangular meshes). The reader can quickly
acquire a good understanding of the basic idea and the technique of the global supercon-
vergence analysis. The interested reader can find more extension to the more complicated
finite element spaces (Chapter 2) and the more complicated problems (Chapter 3).

1.1 Preliminaries

We assume that the reader is familiar with the basic theory of Sobolev spaces and the
finite element method. In this section we introduce some definitions, notations and a few
well-known properties and conclusions. Details can be found in many books, e.g., [1] and
[36].

In this book, the partial differential equations are defined on the bounded domain Q2 C
R", n = 1,2,3, with the boundary 0S2. We adopt the standard notation W ™?(Q)) for

Sobolev spaces (see, e.g., [1]) on §2 with the norm
i ik

m
P
e (Z |w!z,,,,9) . VweW™PQ), 1<p< oo,
k=0

dlely #
fwlepe = (/Q b o} (m) )

|ee|=k

and the seminorm

8=

Here, w = w(z1, - ,Zn), |a| = a1 + - - - + a,, and the derivatives in above formula are
the weak derivatives defined in Sobolev space (see, e.g., [1]). For p = oo, define the norm

[wlmoo0= sup |wlkeon, YweW™>(Q),

IRKM



2 Chapter 1  Basic framework

dlely

W(;n,p(ﬂ) = {w E W'm,p(Q) A ")’ (m) Ian b 0’ Ial < m — 1}’

with the seminorm

ol
8a1w1 soe aanwn

|w|k,00,0 = max ess sup {
|a|=k z€EN

Moreover, we set

where 1 is the trace operator. We denote W ™2(Q2) (or Wg™?(R2)) by H™(Q2) (or HI*(2))
with the norm || - ||, and the seminorm | - |,,, o. In particularly, when the domain 2 does
not need to be emphasized, we use || - || (| - |m) simply to denote || - ||, (| - |m,0).- We
also need a fractional Sobolev space with the norm

_ Al

lwlly,r = R
In this book, we use c or C to denote a general positive constant independent of h,
which can represent different values in different places.
Sobolev embedding theorems are important in our theoretical analysis. The details can
be found in many books, e.g., [1]. In this book, the useful conclusion is that if 9 satisfies
the interior cone condition, then

L#=%(Q) if kp<n
Whe(Q) )
CcYQ) if 0SI<k-2
k,p l,s S He L =
WPP(Q) — W*(Q), s s 0<(k—Up<n.

We often use the following properties: for n = 2,
lwllkpe < Clwlktre, P € [1,00),
lwllk,c00 < Cllwllkt1,p.0, P> 2.

In this book, we will use the finite element space (see, e.g., [36]) as follows. Let Q* be
a polygonal approximation to {2 with the boundary 8Q". Let 7" be a partitioning of Q"

into disjoint element 7, so that Qr = U 7. Let h, be the radius of the circumscribed
TETH

circle of the element 7, h = max,c7rn{h,}. We further require that P; € 9Q" =

P; € 09, where {P;}(i = 1,---,J) is the vertex set associated with the partitioning

T". For ease of exposition we will assume that Q" = . Associated with 7" is a finite-
dimensional subspace V" defined by

Vth={v: v|, € Pu(r), VT € T"},
where P, is the polynomial space of order k. Let

Voh ={ve Vh:’vlag =0}.
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If the element 7 is regular such that

1<E<C,

N
pr
where p is the radius of the inscribed circle of the element 7, then we have the following

inverse estimate:

l—k+n(i-1)
[v]lkp,r < Chr oo, <k <

If u} is the standard interpolant of v in the finite element space V " with order p, we have
the well-known interpolation error estimate:

lu = wfllma0 < CR** ™ uletig0, 0Sm<k+1, 1<k<p.
In addition, we will use the Poincaré inequality:
lwllipe < Clolipa,  Ywe WyP(Q),
and the trace theorem:
lwllk-1,60 < Cllwlx_3 00 < Clwllka, &> 1.

In the last inequality, the constant C is dependent on the domain ). Especially, when the
domain is the element 7, and the element 7 is regular, then the inequality becomes

=X 1
lywllk-1,67 < Cllwlle-y 60 < Chr * [wllk-1,7 + ChZ [wl, .

1.2 Model problem

Let us start our introduction about superconvergence analysis from a simple model pro-
blem — the Poisson equation with Dirichlet boundary condition:

—Au=f in. Q

{ u=0 on 0 ’ i

where 2 C R? is a two-dimensional bounded domain with the boundary 9Q, f € L%(Q)
is the given function, and Ay = & =} @
. dz2 =~ Gy?’

It is well known (see, e.g., [36]) that when the solution of (1.2.1) is a classical solution,

the problem (1.2.1) is equivalent to the following variational problem: find u € H }(Q2)

such that
/Vqu=/fv, Vv € H (), (1.2.2)
Q Q

Ou 8u>

where Vu = (%, B_y
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In order to approximate the variational problem (1.2.2) by the finite element method,
we construct the standard conforming finite element space VJ* C HE(Q) on the regular
mesh 7" (see [36] for details). Then, the finite element scheme of (1.2.2) is to look for
up € V' such that

/ Vup Vo, = / fon, Yo, € VP c HY(Q). (1.2.3)
Q Q

It is well known that the standard error estimate for (1.2.2) and (1.2.3) is
lu = unll1e < Cllu = urll,0 < CA¥||ullks1.0, (12.4)

if u € H*1(Q), where h is the diameter of the largest element in 7 ", k is the order of
the polynomials of the finite element space, and C is a constant independent of u and €.

The proof of the error estimate (1.2.4) can be sketched as follows. Let v, = up — Uy,
where ur € V" is the interpolant of u. Then, vy € V* ¢ HL(Q). It follows from (1.2.2)
and (1.2.3) that

|Uh|%,n=/V(Uh—UI)Vvh=/V(u—u1)Vvh.
Q Q

Therefore, the error between u, and u; can be bounded by the inequality

/V(u—uI)Vvh
lup, —url1,0 < sup =2 .

v EVR |vhll,Q

(1.2.5)

The right-hand side of (1.2.5) is the weak error form (a kind of error presented by the weak
integral form). If we simply use the Schwarz inequality on the right-hand side of (1.2.5),

we obtain
lu — uz|1,0lvnl1,0

lunp, —url1,0 < sup = |u — ur|1,0. (1.2.6)
v, EVH Ivhll,Q
Using the Poincaré’s inequality, we find
lun — urllie < Clun — ur|i,0 < Clu — url1,0 < Cllu — ur|10. (1.2.7)
The inequality (1.2.7) implies that
lu —unllie < llu = urllue + llur — usllie < Cllu — url1,0. (1.2.8)

Then (1.2.4) follows from (1.2.8) and the standard interpolation error estimate:

lu—urllie < Cllu —urlli,o < Ch¥||ullkt1,0-

(1.2.4) means that the order of the error ||u — uy||1,o is optimal. It also has been
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shown in (1.2.6) that the order of the error lun —ur||1,0 is optimal. But if we analyze the
weak integral form (right-side of (1.2.5)) carefully, instead of simply using the Schwarz
inequality to get (1.2.6), a higher convergence order can be proved for the error ||u ;, —
ur||1,0 under some stronger conditions. In the following section, we will analyze the

weak integral form / V(u—ur)Vuy, carefully using the integral identities technique, so
Q

that the superclose property (the higher convergence order for the error [|u 5, — us||1,q) and
the global superconvergence can be proved.

1.3 Integral identity

In this section, we will derive the integral identity which will be used for the global super-
convergence analysis (see more details in, e.g., [69] and [88]).

For simplicity, we will only consider the simple finite element space: the bilinear finite
element space on the rectangular meshes. Let ) be a rectangular domain, and 7 " the
rectangular mesh. The element T € 7" is represented by

ok (:BT —hs iz + hr) X (yT X k‘ray‘r +kT)7

where (z,,y,) is the midpoint of the element T, 2h, and 2k, are the sizes of 7 in
x—direction and y—direction, respectively. Let [;, [, be the left and right edges of the
element 7, and [,,, {;, the upper and bottom edges of the element (see Fig. 1.3.1).

L

2

I H I
(x5, y:)

b

Fig. 1.3.1 The element 7.
The bilinear finite element space V" is defined on the mesh 7" such that
VE = {u, € C(Q) : vnlr € @1},
where @, is the bilinear function space, and

Vbh = {’Uh € Vh : 'Uh|39 = 0}.
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Introduce the auxiliary function

F(y) = 1((y ) —kﬁ). (1.3.1)

The following lemma can be proved by means of simple integration by parts.

Lemma 1.3.1 Suppose that u € H3(Q). Then on the element 7, we have that for all
v € ‘/Oh 4

0 ovp, u 3vh 82y,
/T%(“‘“’)% = T_axayz( s~ 25y )(y—yf)ﬁay) (13.2)

where uy is the piecewise bilinear Lagrange interpolant of u, and F'(y) is defined by
gk

Proof Note that -
Fly)=y—y-, F'ly)=1, (F*(y)" =6(y—y.),

and vy, is a piecewise bilinear function on the element 7. Then it is easy to see that

Ovy, 6vh 82y,
833 (.’1,‘7-, yT) + (y yf)a ay
th 1 32vh
_ Lom2r \\m
=F"(y) 5 @ryr) + 2(F(¥) 520y’ (1.3.3)

2
3 g}; is constant on the element 7. Substituting (1.3.3) into the left-hand side of
i
(1.3.2), we have that

/Ta%w ~u) 22 :/ A R ) LAY

avh

/ = u—uz)(F2(y))’” (1.3.4)

where

Letw = u — uy, let [, and [, be the upper edge and the bottom edge of the element 7,
respectively (see Fig. 1.3.1). Integrating by parts, it can be proved that

arw=(] - ) o[

=F'(yr +k;) (w(zT +hryr + k) —w(zr — hryyr + kT)>

_Fl(yr T k‘r) (’U)(.’ET = hryy-r T k‘r) F w(w'r = -r,y-r k ))



